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Introduction & Motivation
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Figure 1: Job Market Imbalance example.

Some jobs are extremely popular while others

receive nearly no applications
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Goals for a Job

Objective:
- Efficient Job Recommender Systems (JRS) in HR / Recall

» In processing congestion avoidance

Novel Perspective: Congestion avoidance has been extensively studied 2],

Orphan-job phenomenon is largely overlooked in the literature .

(Y. Mashayekhi, B. Kang, J. Lijffijt, and T. De Bie, “ReCon: Reducing Congestion in Job Recommendation Using Optimal Transport,” in Proceedings of the 17th ACM Conference on
Recommender Systems, ACM, 2023, pp. 696—701. doi: 10.1145/3604915.3608817.

[2IH. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, “The Impact of Popularity Bias on Fairness and Calibration in Recommend Ation,” arXiv.org, 2019.

BIG. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty, “FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms,” in Proceedings of The
Web Conference 2020, 2020, pp. 1194-1204.
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JoLA: Job Landscape Aware

Recommendation
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Model Baseline

Score function (appeal between user ¢ and job j)
s(4,J) = a(e(i) - ¢(j) +b)
with (i) and () the user and item embeddings and b is bias.
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Model Baseline

Score function (appeal between user ¢ and job j)

s(1,) = o(p(i) - ¥(j) +b)
with (i) and () the user and item embeddings and b is bias.
Baseline Model uses a Binary Cross Entropy (BCE)

Lpcp(s) = (1 - sz) log(1 — s(4,7)) + Mz’,j log(s(4,7))

with M, . the interaction matrix.
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Market Share Awareness

Market Share Definition: Number of job seekers recommended a specific job ad.

MS(j) = #users where s(%,j) > s(i, j)

where j, is the k' recommended item to user %, for the score function s
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Congestion & Orphan
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Congestion & Orphan
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Differentiable Approximationon of the Market Share

Differentiable Approximation: gradient-based optimization:

MS(j) = 5 3 max(0,s(i,) = s(i, )

where 4 = ﬁ Zz‘,j maX(O, S(’i, ]) — S(i, 17 k:)) Frugal compared to a fully differentiable top-k using [

F. Petersen, H. Kuehne, C. Borgelt, and O. Deussen, “Differentiable Top-k Classification Learning.” Accessed: Jun. 13, 2024. [Online]. Available: http://arxiv.org/abs/2206.07290
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JoLA-Congestion (JoLA-c)

Objective: Accuracy + Congestion

Loss Function:

’CCongestion(S) — ’CBCE(S> T COIlgGStiOIl(S)

Congestion Metric: Entropy of normalized market shares

Congestion(s Z MS,, ;) log M5,

Remark: Encourages balanced exposure across all job ads.
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JoLA-Orphan (JoLA-o)

Objective: Accuracy + Orphans (jobs with less than p applications)

Loss Function:

Lo(8) = Lpcr(s) + a- L, k()

Orphan Loss: Focuses on jobs with market share < p

Lynls) = 5 S (p-MS(G)

p’k(s) j where MS(j)<p

where O, ;. is the number of orphans. We choose p,,, = |22 .
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JoLA-Orphan-Compound (JoLA-oc)

Objective: Accuracy + Orphans + Popularity Avoidance

Loss Function:

Loc(s) = Lpep(s) +a- L,k (s) + B - L5 1 (s)

Compound Term: Reduces market share of non-orphan jobs

fu(s) = —— > MSG) - p)

pak<8) j where MS(j)>p

Remark: Handles invisible job ads (MS = 0) by linearly penalizing the rest.
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Experimental Setup




Datasets and Baselines

Baselines:
« BCE: simple Binary Cross entropy loss
« ReCon State-of-the-art congestion reduction using Optimal Transport !

Datasets: Same setting as ReCon to have heavy tail and warm start

Dataset #users #jobs #1nteractions
CareerBuilder-Small (CB-S) (10 days) 3k 4k 30 k
CareerBuilder-Large (CB-L) (90 days) 42 k 41 k 470 k

Y. Mashayekhi, B. Kang, J. Lijffijt, and T. De Bie, “Scalable Job Recommendation With Lower Congestion Using Optimal Transport,” IEEE Access, vol. 12, pp. 55491-55505, 2024.
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Datasets and Baselines

Evaluation Metrics:
« Accuracy: HR@10, Recall@10

« Congestion: Entropy of market shares

« Orphans: Proportion of (p,k)-orphans (jobs with < p applications when k=10, p=8)
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Training Configuration

Hyperparameters:

« Embedding dimension: 512

« Batch size: 1,024 (CB-S), 4,096 (CB-L)

. Learning rate: 10~2 with AdamW optimizer
« Loss weights: o, 5 € {10_2, s 1O+2}
Training Schedule:

« Phase 1: BCE-only warm-start

« Phase 2: JoLA-specific losses (congestion, orphan or compound)

Computational Resources:

« Runtime: 10 minutes (CB-S), 4.3 hours (CB-L) on consummer GPU (2070S)
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Results




Main Findings on CB-S
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Main Findings on CB-L

Congestion@10

Congestion@10

Figure 5: Pareto front on the CB-L dataset between performance and congestion metrics
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Discussion

Orphan Metric Advantages: More fine-grained than traditional congestion metrics,

directly addresses invisible job ads (MS = 0)
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Discussion

Orphan Metric Advantages: More fine-grained than traditional congestion metrics,

directly addresses invisible job ads (MS = 0)

Trade-off Patterns: JoLA-c provides best congestion reduction, JoLA-o offers balanced

performance, JoLA-oc enables fine-grained control

Scalability: Consistent performance across CB-S and CB-L datasets demonstrates

method robustness

Practical Implications: JoLA can be deployed as in-processing approach or even post-

processing, making it compatible with existing JRS infrastructure.
21/ 24



Conclusion & Future Work




Contributions Summary

JoLA Framework: lessons learned on pulic datasets (CB-S, CB-L)
 Novel differentiable market share approximation for gradient-based optimization
« Three complementary loss functions addressing different market balance objectives

« Focus on the orphan jobs, which are under studied in the litterature
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Future Research Directions

More datasets: apply JoLA on VDAB and France Travail
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Future Research Directions

More datasets: apply JoLA on VDAB and France Travail
Feature-based dataset: Extend JoLA to handle features and not only interaction data

Real-world Deployment: Investigate JoLA performance in production job recommen-

dation systems (AB testing)
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