JoLA: Job Landscape Aware Job Recommendation

RecSys in HR 2025

Solal Nathan, Guillaume Bied, Elia Perennes, Philippe Caillou, Bruno Crepon, Christophe Gaillac, Michèle Sebag.

26th of September, 2025

Introduction & Motivation

Position of the problem

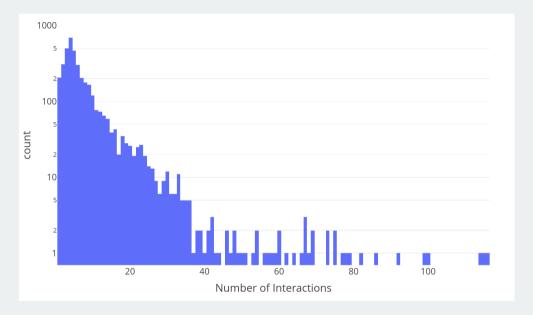


Figure 1: Job Market Imbalance example.

Some jobs are extremely popular while others receive nearly no applications

Position of the problem

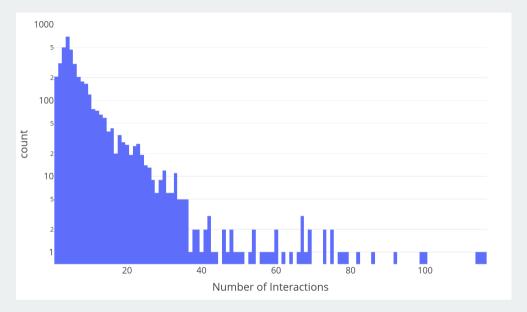


Figure 1: Job Market Imbalance example.

Some jobs are extremely popular while others receive nearly no applications

Congestion Phenomenon: Popular jobs get flooded with applications, creating severe competition.

Position of the problem

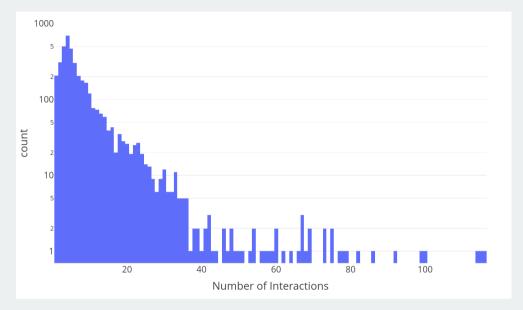


Figure 1: Job Market Imbalance example.

Some jobs are extremely popular while others
receive nearly no applications

Congestion Phenomenon: Popular jobs get flooded with applications, creating severe competition.

Orphan Jobs: Many job ads receive very few or no applications

 Inefficiency of the market → frictional unemployement

Goals for a Job

Objective:

- Efficient Job Recommender Systems (JRS) in HR / Recall
- In processing congestion avoidance

Novel Perspective: Congestion avoidance has been extensively studied [1][2],

Orphan-job phenomenon is largely overlooked in the literature [3].

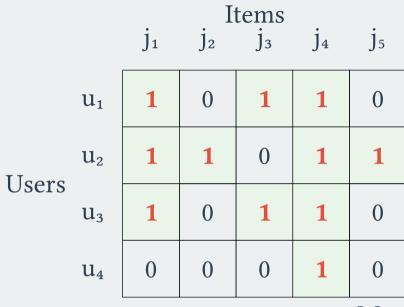
^[1]Y. Mashayekhi, B. Kang, J. Lijffijt, and T. De Bie, "ReCon: Reducing Congestion in Job Recommendation Using Optimal Transport," in *Proceedings of the 17th ACM Conference on Recommender Systems*, ACM, 2023, pp. 696–701. doi: 10.1145/3604915.3608817.

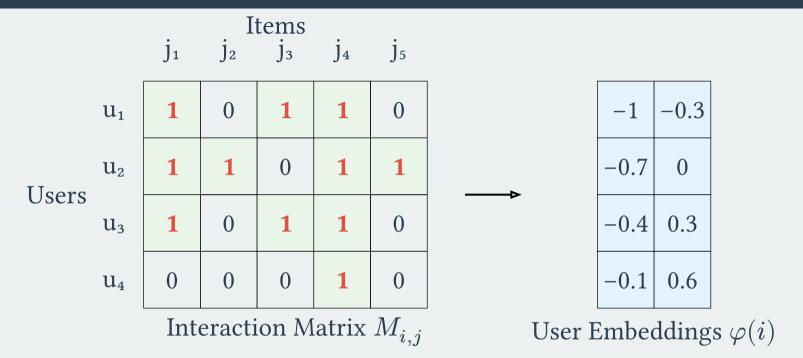
^[2] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, "The Impact of Popularity Bias on Fairness and Calibration in Recommend Ation," arXiv.org, 2019.

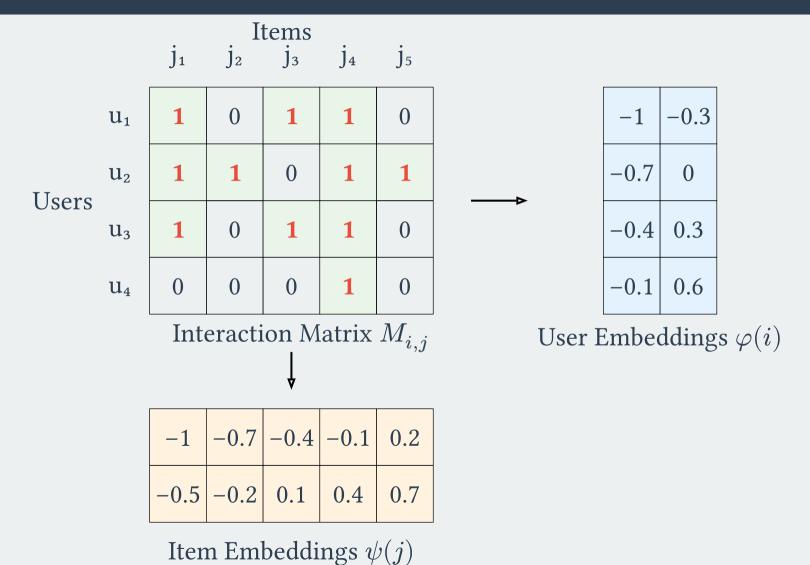
^[3] G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty, "FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms," in *Proceedings of The Web Conference 2020*, 2020, pp. 1194–1204.

JoLA: Job Landscape Aware

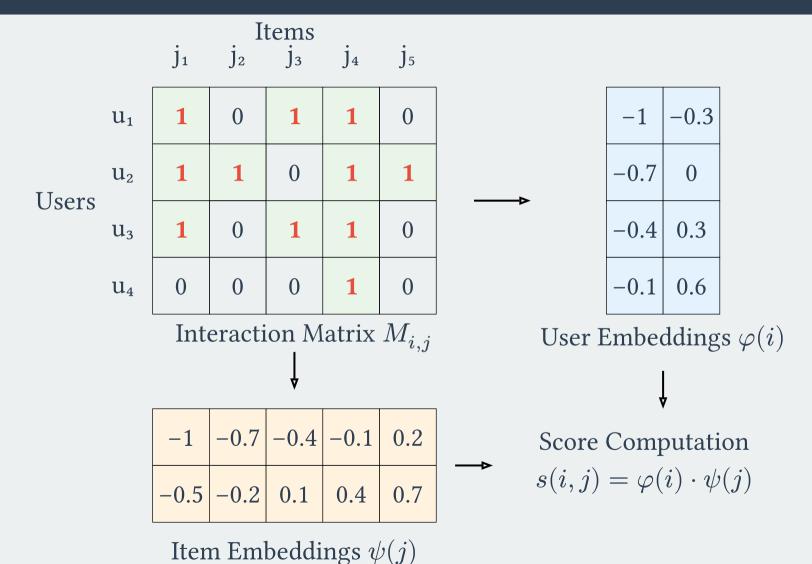
Recommendation







5 / 24



5 / 24

Score function (appeal between user i and job j)

$$s(i,j) = \sigma(\varphi(i) \cdot \psi(j) + b)$$

with $\varphi(i)$ and $\psi(j)$ the user and item embeddings and b is bias.

Score function (appeal between user i and job j)

$$s(i,j) = \sigma(\varphi(i) \cdot \psi(j) + b)$$

with $\varphi(i)$ and $\psi(j)$ the user and item embeddings and b is bias.

Baseline Model uses a Binary Cross Entropy (BCE)

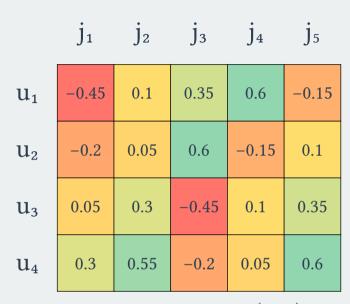
$$\mathcal{L}_{\text{BCE}}(s) = \left(1 - M_{i,j}\right) \log(1 - s(i,j)) + M_{i,j} \log(s(i,j))$$

with $M_{i,j}$ the interaction matrix.

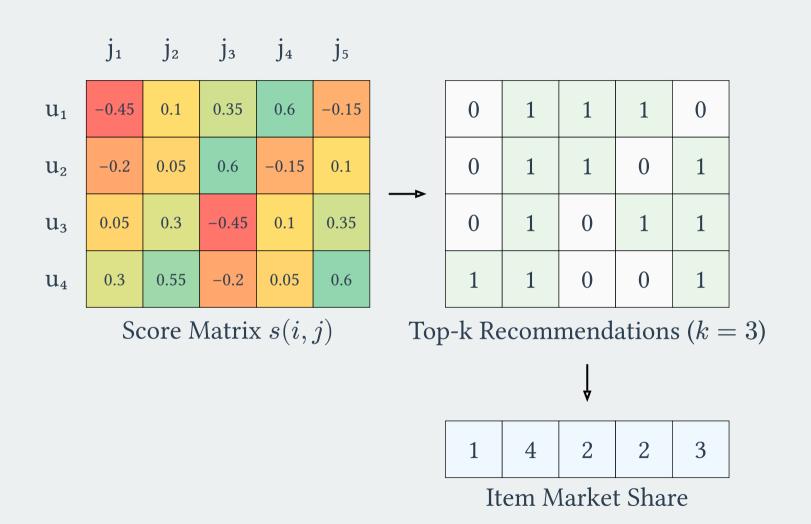
Market Share Definition: Number of job seekers recommended a specific job ad.

$$MS(j) = \#users where s(i, j) \ge s(i, j_k)$$

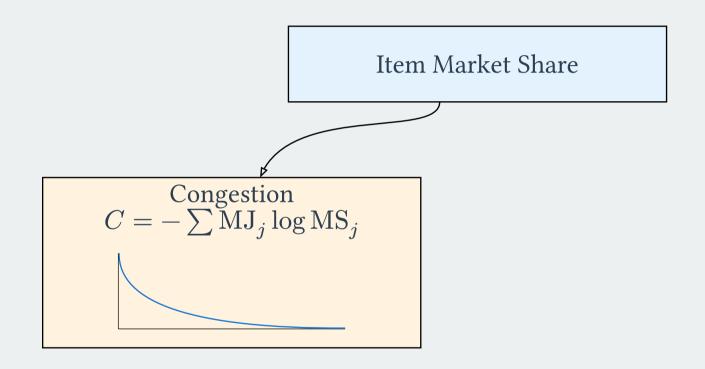
where j_k is the kth recommended item to user i, for the score function s

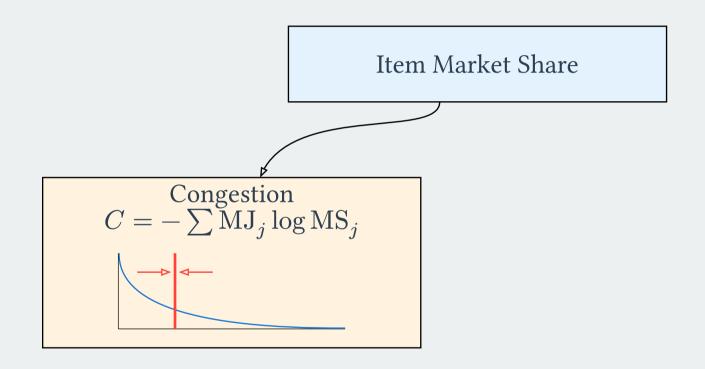


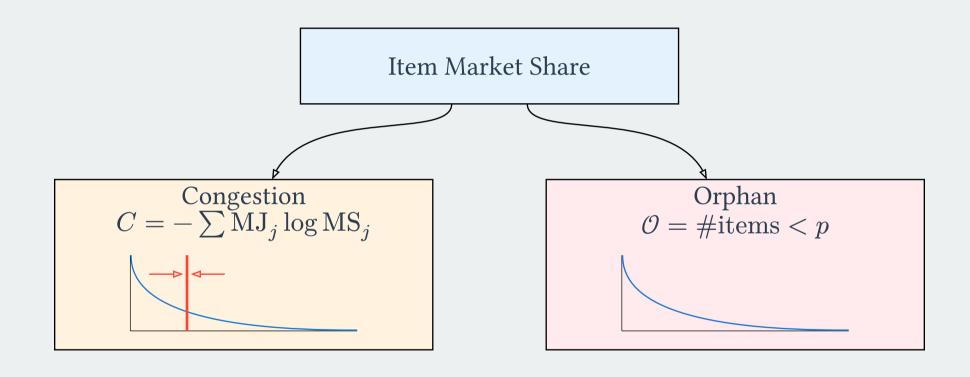
Score Matrix s(i,j)

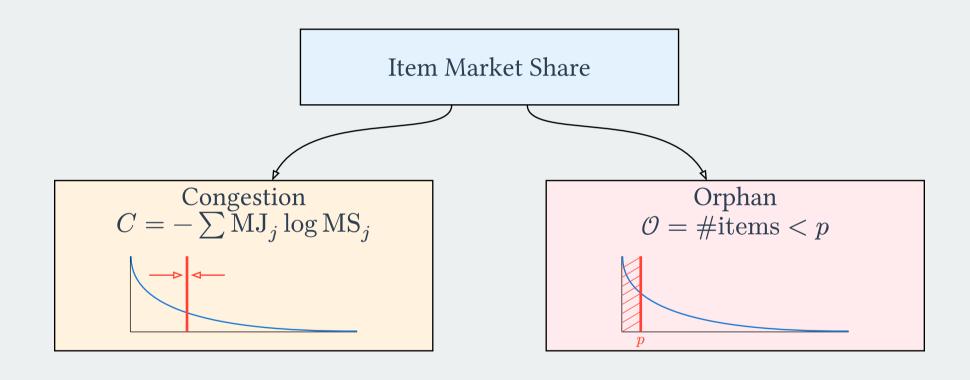


Item Market Share









Differentiable Approximation on of the Market Share

Differentiable Approximation: gradient-based optimization:

$$\mathrm{MS}(j) = \frac{1}{\mu} \sum_i \max(0, s(i, j) - s(i, j_k))$$

where
$$\mu = \frac{1}{nk} \sum_{i,j} \max(0,s(i,j)-s(i,j_k))$$
 Frugal compared to a fully differentiable top-k using [1]

 $[\]label{lem:condition} \begin{center} \begin{center} [1]{lightgray} F. Petersen, H. Kuehne, C. Borgelt, and O. Deussen, "Differentiable Top-k Classification Learning." Accessed: Jun. 13, 2024. [Online]. Available: http://arxiv.org/abs/2206.07290. [Online]. [Online]. Available: http://arxiv.org/abs/2206.07290. [Online]. [Online].$

JoLA-Congestion (JoLA-c)

Objective: Accuracy + Congestion

Loss Function:

$$\mathcal{L}_{\text{Congestion}}(s) = \mathcal{L}_{\text{BCE}}(s) + \alpha \cdot \text{Congestion}(s)$$

Congestion Metric: Entropy of normalized market shares

$$\operatorname{Congestion}(s) = -\sum_{j \in [m]} \operatorname{MS}_{n(j)} \log \operatorname{MS}_{n(j)}$$

Remark: Encourages balanced exposure across all job ads.

JoLA-Orphan (JoLA-o)

Objective: Accuracy + Orphans (jobs with less than *p* applications)

Loss Function:

$$\mathcal{L}_{\mathrm{O}}(s) = \mathcal{L}_{\mathrm{BCE}}(s) + \alpha \cdot \mathcal{L}_{p,k}(s)$$

Orphan Loss: Focuses on jobs with market share < p

$$\mathcal{L}_{p,k}(s) = \frac{1}{\mathcal{O}_{p,k}(s)} \sum_{j \text{ where } \mathrm{MS}(j) < p} (p - \mathrm{MS}(j))^2$$

where $\mathcal{O}_{p,k}$ is the number of orphans. We choose $p_{\max} = \lfloor \frac{nm}{k} \rfloor$.

JoLA-Orphan-Compound (JoLA-oc)

Objective: Accuracy + Orphans + Popularity Avoidance

Loss Function:

$$\mathcal{L}_{\text{OC}}(s) = \mathcal{L}_{\text{BCE}}(s) + \alpha \cdot \mathcal{L}_{p,k}(s) + \beta \cdot \mathcal{L}_{p,k}^{c}(s)$$

Compound Term: Reduces market share of non-orphan jobs

$$\mathcal{L}_{p,k}^{c}(s) = \frac{1}{n - \mathcal{O}_{\mathbf{p},\mathbf{k}}(s)} \sum_{j \text{ where } \mathbf{MS}(j) \geq p} (\mathbf{MS}(j) - p)$$

Remark: Handles invisible job ads (MS = 0) by linearly penalizing the rest.

Experimental Setup

Datasets and Baselines

Baselines:

- BCE: simple Binary Cross entropy loss
- **ReCon** State-of-the-art congestion reduction using Optimal Transport [1]

Datasets: Same setting as ReCon to have heavy tail and warm start

Dataset	#users	#jobs	#interactions
CareerBuilder-Small (CB-S) (10 days)	3 k	4 k	30 k
CareerBuilder-Large (CB-L) (90 days)	42 k	41 k	470 k

^[1]Y. Mashayekhi, B. Kang, J. Lijffijt, and T. De Bie, "Scalable Job Recommendation With Lower Congestion Using Optimal Transport," IEEE Access, vol. 12, pp. 55491–55505, 2024.

Datasets and Baselines

Evaluation Metrics:

- Accuracy: HR@10, Recall@10
- **Congestion:** Entropy of market shares
- Orphans: Proportion of (p,k)-orphans (jobs with < p applications when k=10, p=8)

Training Configuration

Hyperparameters:

- Embedding dimension: 512
- **Batch size:** 1,024 (CB-S), 4,096 (CB-L)
- Learning rate: 10^{-2} with AdamW optimizer
- Loss weights: $\alpha, \beta \in \{10^{-2}, ..., 10^{+2}\}$

Training Schedule:

- **Phase 1:** BCE-only warm-start
- Phase 2: JoLA-specific losses (congestion, orphan or compound)

Computational Resources:

• Runtime: 10 minutes (CB-S), 4.3 hours (CB-L) on consummer GPU (2070S)

Results

Main Findings on CB-S

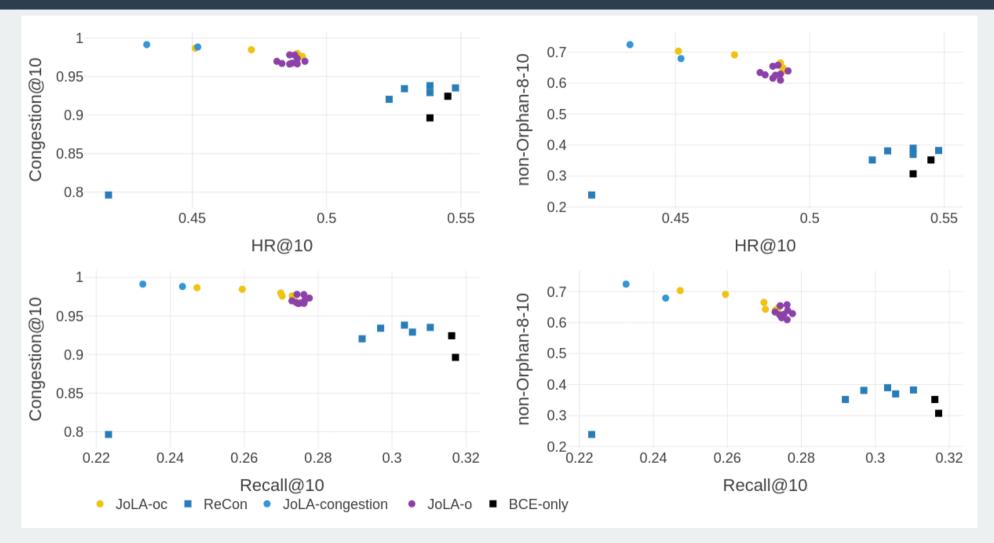


Figure 4: Pareto front on the CB-S dataset between performance and congestion metrics

Main Findings on CB-L

Figure 5: Pareto front on the CB-L dataset between performance and congestion metrics

Orphan Metric Advantages: More fine-grained than traditional congestion metrics, directly addresses invisible job ads (MS = 0)

Orphan Metric Advantages: More fine-grained than traditional congestion metrics, directly addresses invisible job ads (MS = 0)

Trade-off Patterns: JoLA-c provides best congestion reduction, JoLA-o offers balanced performance, JoLA-oc enables fine-grained control

Orphan Metric Advantages: More fine-grained than traditional congestion metrics, directly addresses invisible job ads (MS = 0)

Trade-off Patterns: JoLA-c provides best congestion reduction, JoLA-o offers balanced performance, JoLA-oc enables fine-grained control

Scalability: Consistent performance across CB-S and CB-L datasets demonstrates method robustness

Orphan Metric Advantages: More fine-grained than traditional congestion metrics, directly addresses invisible job ads (MS = 0)

Trade-off Patterns: JoLA-c provides best congestion reduction, JoLA-o offers balanced performance, JoLA-oc enables fine-grained control

Scalability: Consistent performance across CB-S and CB-L datasets demonstrates method robustness

Practical Implications: JoLA can be deployed as in-processing approach or even post-processing, making it compatible with existing JRS infrastructure.

Conclusion & Future Work

Contributions Summary

JoLA Framework: lessons learned on pulic datasets (CB-S, CB-L)

- Novel differentiable market share approximation for gradient-based optimization
- Three complementary loss functions addressing different market balance objectives
- Focus on the orphan jobs, which are under studied in the litterature

Future Research Directions

More datasets: apply JoLA on VDAB and France Travail

Future Research Directions

More datasets: apply JoLA on VDAB and France Travail

Feature-based dataset: Extend JoLA to handle features and not only interaction data

Future Research Directions

More datasets: apply JoLA on VDAB and France Travail

Feature-based dataset: Extend JoLA to handle features and not only interaction data

Real-world Deployment: Investigate JoLA performance in production job recommendation systems (AB testing)

Questions?

Paper

Source Code

Contact

- solal.nathan@inria.fr
- ₩ @solalnathan.com
- @ @solalnathan@sigmoid.social