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Abstract

Job recommendation (JR), among the most critical challenges of Al, aims to alleviate frictional unemployment with major potential
impacts on society and economy at large. However, Job Recommender Systems (JRS) might become counter-productive and create a
congestion phenomenon, if job seekers are mostly recommended the most popular job ads.

This paper proposes a novel perspective on JRS, observing that the job market tends to involve a number of so-called “orphan” job
ads, that receive very few or no applications. The orphan-job phenomenon is detrimental to the job market as it mechanically decreases
the number of jobs effectively considered, worsening the market imbalance and increasing the congestion; in the long term, it also tends
to prevent companies from publishing other ads, de facto creating a sleeping job market that is not revealed to the job seekers.

This paper introduces new JRS losses, aimed to prevent both the congestion and the orphan-jobs phenomenon, based on a
differentiable approximation of the market share attributed to a job ad. The resulting so-called Job Landscape Aware recommender
system (JoLA) is experimentally assessed and compared with the state of the art on public datasets, showing new trade-offs that exist
between standard recommendation metrics and congestion, while enforcing the desired exposure for most ads. The JoLA code is

publicly available at https://codeberg.org/solal/jola.
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1. Introduction

Job Recommender Systems (JRSs), at the forefront of Al for
good, are viewed as a promise to reduce frictional unem-
ployment [1]. In the perspective of job seekers, JRSs can
potentially alleviate the burden of finding a job best suited
to them, among the many job ads available through diverse
canals, ranging from e.g. LinkedIn [2, 3] or CareerBuilder to
Public Employment Services (PES) [4]. In the perspective of
recruiters, JRSs can symmetrically help finding job seekers
best suited to a job ad [5].

JRSs build upon the massive development of recom-
mender systems [6, 7], prompted by the deployment of e-
commerce and entertainment platforms since the mid 1990s
[6]. Yet, unlocking the full potential of these systems in the
context of job platforms or PES requires taking into account
specificities of the labor market [4], the more so given the
high-risk nature of this Al application [8, 9].

Among these specificities is the fact that job recommen-
dation is a multi-stakeholder, reciprocal problem [10, 11, 12].
Enforcing an appropriate distribution of the recommenda-
tions, as detailed below, is achieved by intervening in an
in-processing or post-processing manner on the recommen-
dation policy [13] beyond the standard probability ranking
principle.

This paper focuses on enforcing two desired properties of
the recommendation distribution.! The first one is to avoid
the so-called congestion phenomenon. As job ads are rival
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Another most desired property concerns the fairness of the recom-
mendation policy [5, 14], as the recommender system can amplify the
biases and discriminations observed in the data. Fairness aspects are
outside the scope of this paper.

goods — an item (job ad) can most generally be attributed
to a single user — recommending a small subset of popular
job ads to most users can create severe congestions, where
many job seekers compete for the same job ads. The second
one is that many job ads — referred to as orphan jobs in the
following — actually receive few or no applications, de facto
worsening the job market imbalance, and discouraging the
affected companies from publishing more job ads on job
platforms or at the PES.

How to avoid congestion and resist the bias toward pop-
ular items has been extensively investigated in the general
recommender systems literature [15] and in the context of
Job Recommender systems [16] (more in Section 4). How to
ensure a fair share of users’ attention to every item has also
been extensively considered in the literature [17], although
much less so in the JRS context [18] to our best knowledge.
Still, the point of attracting job seekers to every job ad ap-
pears a strategic issue, in both perspectives of job seekers
and recruiters. On the one hand, recommending orphan
jobs to job seekers contributes to alleviate the congestion
and the competition on the job market. On the other hand,
the fact that companies receive more (or at least some) ap-
plications on every job ad might incentivize them to publish
more and possibly more diverse job ads. Actually, some
practitioners suggest that a significant part of the jobs to
be fulfilled are sleeping ones: they are not published on the
PES platforms as the recruiters feel that they would receive
no applications.?

This paper focuses on the design and assessment of a job
recommender system addressing both issues of congestion
and orphan jobs, with two main contributions. First, we
propose using a differentiable approximation of the market

“Indeed, part of the so-called sleeping job ads require skills that might
be missing among the job seekers. However, the indication that some
people are willing to apply to such job ads might still unlock the
situation, e.g. by pointing at the need to offer specific training and the
existing motivation to follow these.
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share associated with each job ad (the number of applica-
tions received after recommending the top-k items corre-
sponding to each job seeker) to design loss functions tar-
geting the distribution of exposure among job ads. Such
loss functions may be added to standard pointwise losses in
JRSs to minimize the number of orphan jobs, or to reduce
congestion, as an in-processing strategy. Secondly, a JRS
trained using these compound training losses, called Job
Landscape Aware recommender system (JoLA) is assessed
on public job recommendation datasets, and compared with
the state of the art, chiefly the ReCon approach [16, 4]. Most
interestingly, in the considered settings the number of or-
phan jobs appears to be significantly more informative than
the entropy of the market shares, classically used to train a
congestion-avoiding JRS [16, 19].

The paper is organized as follows. Section 2 presents an
overview of the proposed JoLA. The experimental setting
used to comparatively assess JoLA, and the empirical results
are respectively detailed in Sections 3 and 4. Section 5 dis-
cusses the position of the proposed approach with respect
to related work. We last conclude and present the research
perspectives opened by the proposed approach.

2. Overview of JoLA

This section presents the proposed JoLA approach and de-
tails its components.

Notations. The recommendation dataset consists of the
interaction matrix M(n, m) between n users (job seekers)
and m items (job ads). Binary interactions are considered:
M[i, j] = 1iff the i-th user applies on the j-th job ad, and
0 otherwise. Following [4] the feature-based description
of users and items is not considered, as the focus is on the
recommendation policy in a warm-start recommendation
setting [15].

It is worth noting however that the proposed approach
extends to the feature-based recommendation setting in
a straightforward manner.

2.1. Position of the warm-start
recommendation problem

Recommender systems classically proceed by learning from
the interaction matrix a real-valued score function s(i, j).
The recommendation policy 7y recommends to each i-th
user a list of items, ordered by decreasing value of s(i, /).
Most generally, the set of recommendations to the i-th user
is the set of top-k job ads after s(i, -) with k a positive integer
(1 £k <m). Let us denote jg;,, the u-th item recommended
to the i-th user after policy 7.

A scoring function is first assessed from its Recall at k,
measuring the fraction of true interactions present in the
top-k recommendations, averaged over all users:

k ..
Zu:l M(l’]s,i,u) z

Recall@k(s) = Averageic[y zzm MG
u=1 > Jsiu

A more relaxed performance metrics is the Hit-rate at k, mea-
suring the fraction of users for whom at least one interaction
appears in the top-k recommendations:

HR@k(s) = Averageie[, {lz’;zl M(i,jsi,u)}

where indicator function 14 is 1 iff A is positive, and 0
otherwise.

Following the standard methodology for warm-start col-
laborative filtering [20], the scoring function is learned from
the training part of the interaction matrix, and assessed from
its performance on the rest of the interaction matrix.

2.2. A multi-stakeholder recommendation
problem

As said, the domain of job recommendation involves rival
goods, i.e. a given item can be attributed to at most one
user. Two more performance metrics are thus considered to
assess the global impact of the recommendation policy. The
first one is the congestion score [16], defined as follows.

Let us first define the market share of an item, noted
MS(j), as the number of job seekers who are recommended
this item according to 7;:

MS(j) = #{i € [n] s.t. s(0, /) >= s(i, js, )}

The normalized market share noted MS,,(j) is MS(j) divided
by nk; the normalized market shares thus sum to 1. The
congestion is then classically defined as the entropy of the
normalized market shares:

Congestion(s) = — Z MS,(j) log MS,(j)
jelm]

Another performance metrics, noted 0,y and generalizing
the coverage [21], is also considered. @,k counts the number
of job ads that are involved in less than p recommendations,
with p a positive integer.®> Formally, a job ad is said to be
a (p, k)-orphan iff its number of applicants after 7 is less
than p, when each user receives k recommendations. The
proportion of (p, k)-orphans noted @, is then defined as:

1
Opi(s) = - > Lusy<p
jelm]

Note that for p = 1, the O, metrics is but the complemen-
tary of the coverage metrics.

2.3. The JoLA algorithm

JoLA is built by training two neural embeddings respectively
associated with users and items and referred to as ¢ and
. The recommendation score s(i, j) associated to the pair
made of the i-th user and j-th item is defined as:

s(i, j) = sigmoid((¢(), Y/()) + b)

The use of the sigmoid enforces s(i, j) in [0, 1] for a better
training stability; constant b is trained and adjusts the range
of recommendation scores amenable to optimization (with
non vanishing gradients) [22].

Embeddings are learned by minimizing a compound loss.
The first term of the learning loss classically is the binary

3Note that by design, the maximal value of p such that there exists no
(p, k)-orphan is
k
Prmax = l n_J (1)

m

For p > prax the recommendation policy can but create (p, k)-orphans.
Note that [18] minimizes the number of orphan jobs for p = pp...-



cross-entropy loss Lpcg(s), meant to approximate the inter-
action matrix and defined as:

M, j) log(s(i, /)
+(1 = MG, /) log(1 - s, ))
(2)
A first JoLA mode, referred to as JoLA-Congestion (JoLA-
c), is trained by minimizing the loss defined as:

ZBeE(S) = Yieln je[m]

B?Congestion(s) = Zpci(s) + aCongestion(s) 3

with @ > 0 the weight of the congestion term; the congestion
term relies on a differentiable approximation of the market
shares, detailed below.

Likewise, a second JoLA mode, referred to as JoLA-
Orphan (JoLA-o), is trained by minimizing:

ZLorphan(s) = LpcE(s) + aZpi(s) 4

with a > 0 the weight of the orphan loss defined as:

i)

“Opk(S) /41ty

Zpi(s) = (p—MSG)* (5

with 0, i(s) the proportion of (p, k)-orphans after policy 7.

2.4. Differentiable Market Share

For simplicity and computational frugality, an approximate
computation of the market share is used:*

MSG) = 2 37 (s(G,) - s(i o))

i€[n]

where A, = max(0, A) and p set to the difference between
s(i, j) and s(i, js; 1) when the difference is positive, averaged
over all recommendations:

LS (sGd) - o)

==
i€[n].je[m]

Informally, MS(j) considers all users i who will be recom-
mended the j-th job ad after 7 (i.e., s(i, j) >= s(i, js;1))- The
sum of these scalar differences is approximated into a count
by the division by p.

2.5. The case of invisible job ads

A main weakness of the orphan loss (Eq. 5) is that its gradi-
ent does not involve any j-th job ad whose market share is
0, referred to as invisible job ad, as

vi € [n], s, j) < s jsi)

For such invisible job ads i, the loss gradient can only flow
through Lpcg, hampering the evolution of i toward any
better market share.

Several options have been considered to take into ac-
count the case of invisible job ads. We eventually define a
third JoLA mode, referred to as JoLA-Orphan-compound
(JoLA-oc), where the recommendation score is trained by
minimizing:

gérphan(s) = gBCE(s) + agp,k(s) + ﬁg;,k(s) (6)

*An alternative left for further work is to use differentiable sorting and
ranking [23, 24, 25]. We opted for the approximate estimation for the
sake of computational frugality, after preliminary experiments showing
a good accuracy of the approximation for k > 10.

where the third term with weight f > 0 aims to decrease
the market share of non-orphan job ads, thereby increasing
the market share of orphan job ads (including the invisible
ones).

Zy(s) = MSG) = p) (7)

¥
m (1= 0pi9)) e/ Hstiy>

3. Experimental Setting

This section details the goals of experiments and the method-
ology followed to experimentally validate JoLA.

3.1. Goals of experiments

Our main goal is to comparatively assess the respective
merits of the diverse JoLA modes in terms of the trade-off
among the different performance indicators. The trade-
off concerns the accuracy metrics (HR@10 and Recall@10)
vs the user metrics (congestion) vs the recruiter metrics

(number of (p, k)-orphans).

3.2. Baselines and Benchmarks

The first baseline is the policy based on the optimization of
the only BCE loss (Eq. 2). The second baseline is the ReCon
JRS [4], also aimed at alleviating the congestion through an
in-processing method (more in Section 5); as said, ReCon is
the approach most related to ours.

For the sake of comparison and reproducibility, we thus
consider the same public datasets as those used to assess
ReCon, i.e. the small and large CareerBuilder datasets de-
scribed in Table 1, abbreviated as CB-S and CB-L. Both are
extracted from the whole anonymized CareerBuilder dataset,
released for the 2012 Kaggle competition.” CB-S and CB-L
respectively retain interactions from the last 10 and 90 days.
The training/validation/test split of the interaction matrix,
the training interaction matrix noted M;, 4y, the validation
interaction matrix noted M, and the batch sampling pro-
cess are set after [4] for the sake of a fair comparison. M,y
is used to determine the early stopping (see section 3.6) of
the BCE phase.

3.3. Training/test split and batch sampling

Following ReCon’s experimental setting, each batch 9 in-
cludes i) B positive interactions (i, j) uniformly sampled in
the positive interactions in M;,,;,; ii) negative interactions
sampled as follows. For each positive interaction (i, j), two
user indices i’,i" (respectively two item indices j’,j") are
additionally uniformly sampled without replacement in [n]
(resp. [m]) such that (i, j"), (i, j"), (", j), (", j) are negative
interactions according to M, 4.

The BCE loss is computed after Eq. 2, and divided by 5B
for the sake of normalization.

Congestion and orphan losses are computed from the
market shares estimated on the batch. Formally, all (unique)
job ads involved in & are considered and the associated
market share is computed by approximating how many
(unique) users involved in % are recommended this job
ad. The value of O(s) involved in the losses (Egs. 5 - 6)
corresponds to the number of (p, k)-orphans in .

*https://www.kaggle.com/competitions/job-recommendation/data.



Table 1

Benchmark datasets: CareerBuilder-Small (CB-S) and CareerBuilder-Large (CB-L)

Dataset  Job seekers  Jobsads  Train Interactions  Validation Interactions  Test Interactions
CB-S 3876 4337 24316 (81%) 1071 (4%) 4557 (15%)
CB-L 42346 40542 450670 (96%) 9453 (2%) 9690 (2%)

3.4. Performance indicators

The reported HR@k and Recall@k metrics are computed
on the test interaction matrix M, The fraction of or-
phan and invisible jobs are computed on the whole dataset
(Miyain U Mygr U Myeg), as their estimation on a small dataset
(e.g. M;.q only) is irrelevant (Fig. 1). For the sake of read-
ability, all tables report the proportion of non-orphans (to be
maximized) instead of the number of orphans denoted og 1.
All performance metrics thus follow the “higher is better”
principle.

3.5. Hyper-parameter configurations

Following ReCon again, the dimension d of the user embed-
ding ¢ (resp. item embedding 1) varies in [256, 512]. Each
coordinate of ¢ and ¥/ is initialized to ¢ — 4 with ¢ randomly
drawn after #(0,.01) in ReCon [16].

In early experiments, the initialization of ¢ and ¢ in JoLA
was based on the singular value decomposition (SVD) de-
composition of M4y, significantly speeding up the opti-
mization of the BCE loss term. In counterpart however, this
initialization resulted in a large number of invisible job ads
in the first optimization epochs, increasing from circa 0 with
a random initialization to circa 20% with SVD initialization,
all the more so with small batch sizes:

32 64 128 56 5: 1024 2048 4096 full-SVD

02
015

01
005

nvisiblesg n

32 64 128 512 1024 2048 4096 full-SVD
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Figure 1: CareerBuilder-Small: Sensitivity w.r.t. the batch size B
in [32, 4096], with k = 10, p = 8, when considering an SVD initial-
ization of the user and item embeddings ¢ and . Top: fraction
of (p, k)-orphans according to policy 7gyp. Bottom: fraction of
invisible job ads according to 7g;p. Rightmost column: fraction
of (p, k)-orphans and invisible job ads in M4,

The hyper-parameters of ReCon are taken from [16] (pa-
rameters of the Sinkhorn algorithm: y = 10.0, ¢ = 1 x 1072
and max_iters = 100). The dimension d of embeddings ¢
and ¢ ranges in [256, 512]; their initialization is random (see
above).

The hyper-parameters of JoLA include: i) the type of
loss (BCE only; JoLA-c; JoLA-o and JoLA-oc); ii) the loss
weights a and f; iii) the size of the batch, controlled after
the number B of positive interactions; iv) the initial learning
rate adapted using AdamW [26]; v) the dimension d of the
embeddings. In all experiments, k = 10 and the threshold p
on the market shares is set to 8 (= Py EqQ. 1). The selected
hyper-parameter configuration is determined by optimizing
loss BCE: the learning rate is 1072; the batch size is B = 1024

for CB-S and B = 4096 for CB-L; the embedding dimension
d = 512. The value of hyper-parameter « (respectively f)
varies in {107¢, ..10%%} for £ = 2.

3.6. Computational resources

The runtimes are measured on consumer grade GPU.

+ CPU: 12th Gen Intel i3-12100 (8) @ 5.500GHz

« GPU: NVIDIA GeForce RTX 2070 SUPER [8 GiB
VRAM]

« Memory: 32 GiB

All experiments consider 50 epochs, amounting to circa 10
minutes on CB-S and circa 4 hours and 20mn on CB-L.

The overall computational cost of JoLA is reduced by
using a schedule. A first warm-start phase relies on the
optimization of the BCE loss (Eq. 2) during the first epochs.
The embeddings ¢ and i trained at the end of this first phase
are further optimized by JoLA-c, JOLA-o0 and JoLA-oc during
the last epochs, respectively considering Eq. 3, 4 and 6.

For CB-S, the first phase lasts for 25 epochs. For CB-L,
the length of the first phase is set by early-stopping, based
on the HR@10 score on M, (30 epochs on average).

4. Experimental Validation

This section reports on the comparative experimental val-
idation of JOLA on CB-S and CB-L. The JoLA code is pub-
licly available at https://codeberg.org/solal/jola. In all tables
and figures, 0g 19 corresponds to the number of non-(p, k)-
orphans for k = 10, p = 8.

4.1. CareerBuilder-Small

Table 2 displays the comparative performances obtained on
CB-S for d = 512 and batch size B = 1,024, selecting the
non-dominated configurations. ReCon improves on BCE
in terms of congestion (from .92 to .94) and (p, k)-orphans
(from .35 to .38), with same HR@10, at the expense of a
slight loss in Recall@10 (from .32 to .31).

JoLA-c achieves a quasi optimal congestion (.99) and an
excellent performance in terms of non-(p, k)-orphans (.68)
at the expense of a significant loss in HR@10 (from .55 to
.45) and in Recall@10 (from .32 to .24). JoLA-o achieves a
more balanced trade-off than JoLA-c: for a slightly lesser
congestion (.98) and number of non-(p, k)-orphans (.64) it
reaches a better HR@10 and Recall@10 (.49 and .28). Finally,
JoLA-oc can be finely controlled using weight f to either
favor the congestion and the number of non-(p, k)-orphans
(.99 and .70) or the accuracy metrics (.49 and .27).

Allin all, Table 2 presents a set of non-dominated configu-
rations, enabling the designer to select their preferred trade-
offs among the different performance metrics. Schemati-
cally, BCE is the best approach for Recall@10 and HR@10;
JoLA-oc is the best one for congestion and non-(p, k)-
orphans. ReCon is non-dominated w.r.t. congestion and
HR@10.
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It is noteworthy that the reduction of non-(p, k)-orphans
goes with a better congestion: indeed, if all or most market
shares are above p (all the more so as p = pyax Eq. 1) then
the market shares can only be balanced. In other words, the
metrics suited to job seekers and to recruiters do not seem
to be antagonistic.

Another remark is that the congestion value appears to
be less finer-grained (varying from .92 to .99) than the num-
ber of non-(p, k)-orphans (varying from .35 to .70). More
specifically, the number of orphans and the congestion value
are informative for different modes of the market share dis-
tribution, after complementary experiments (not shown
in the paper): for a high number of non-(p, k)-orphans
(> 80%), the congestion widely varies in [.4,.8]. Quite the
contrary, for high values of congestion (> .9), the number
of non-(p, k)-orphans widely varies. In other words, the
number of non-(p, k)-orphans appears to be more detailed
in the interesting region, where the market shares are not
too imbalanced.

Table 2

CareerBuilder-Small: Comparative performances of the baselines
BCE and ReCon, versus JoLA-congestion, JoLA-orphan and JoLA-
compound

a B | hr@10 r@10 o5 cong@10
BCE 0.55 0.32 035 0.92
ReCon 107 0.55 0.31 0.38 0.94
JoLA-c 10 0.48 027 072 0.99
JoLA-o 1 0.49 0.28 0.64 0.98
JoLA-oc 1 1 0.49 027 0.67 0.98
JoLA-oc 1 1 0.45 0.25  0.70 0.99

4.2. CareerBuilder-Large

Table 3 displays the comparative performances obtained
on CB-L for d = 512 and batch size B = 4,096 (except for
ReCon which uses B = 1,024 due to higher VRAM usage
limitations).

The difference among the CB-L and CB-S datasets is
visible as the BCE performance in terms of HR@10 and
Recall@10 is higher; in the meanwhile, no approach per-
forms as well on CB-L in terms of congestion and number
of non-(p, k)-orphans, as on CB-S. Both differences suggest
that CB-L is less diversified than CB-S.

On CB-L, the best approach in terms of HR@10 and Re-
call@10 still is BCE (respectively .60 and .41), at the expense
of a low congestion (.90) and number of non-(p, k)-orphans
(.:31). ReCon improves on BCE in both terms of congestion
and non-(p, k)-orphans (respectively .97 and .49) with no
loss in terms of HR@10 and a very slight loss in Recall@10
(from .41 to .40). JoLA-c significantly improves on ReCon in
terms of congestion (.98) and non-(p, k)-orphans (.64) with
a loss in HR@10 (from .60 to .55) and Recall@10 (from .40
to .38).

JoLA-o very slightly improves on JoLA-c in terms of HR
and Recall, at the expense of a significant loss in terms of
congestion (.98 to .95) and non-(p, k)-orphans (from .64 to
51).

Finally, JoLA-oc dominates JoLA-o in all respects; it is
slightly dominated by JoLA-c in terms of congestion and
non-(p, k)-orphans and slightly better in terms of HR@10
and Recall@10.

Table 3

CareerBuilder-Large: Comparative performances of the baselines
BCE and ReCon, versus JoLA-congestion, JoLA-orphan and JoLA-
compound

a B | hr@10 r@10 o5 cong@10
BCE 0.60 0.41  0.31 0.90
ReCon 107° 0.60 0.40  0.49 0.97
JoLA-c 1 0.55 0.38  0.64 0.98
JoLA-o K 0.56 0.39  0.51 0.95
JoLA-oc K 1 0.58 0.39 053 0.96
JoLA-oc 1 1 0.57 0.39 057 0.97

4.3. Pareto fronts

Figures 2 and 3 display the Pareto front of the performance
metrics on respectively CB-S and CB-L, specifically the
trade-off between HR@10 and Congestion (top-left), HR@10
and number of non-(p, k)-orphans (top-right), Recall@10
and Congestion (bottom-left) and Recall@10 and number
of non-(p, k)-orphans (bottom-right). As said, HR@10 and
Recall@10 are computed on the test interaction matrix; the
number of (p, k)-orphans and congestion are computed on
the whole interaction matrix.

On CB-S, all four Pareto fronts present a similar struc-
ture: mostly ReCon appears on the right side (high accuracy
metrics, Recall@10 or HR@10); JoLA-o and JoLA-oc ap-
pear in the center (trade-off between accuracy metrics and
congestion/non-(p, k)-orphans); and JoLA-c dominates in
the left (best congestion or non-(p, k)-orphans).

On CB-L, the four Pareto fronts are more diverse. A
significant difference with CB-S is that JoLA-o is generally
dominated. Except for this difference, we still have ReCon
in the right, together with BCE (high accuracy metrics),
JoLA-oc in the center, and JoLA-c in the left.

5. Position w.r.t. Related Work

The goals of preventing congestion and ensuring a fair dis-
tribution of the recommendations among items, users, or
stakeholders, addressing both ethical and practical concerns
have been extensively considered in the general literature
devoted to recommender systems (RS) [27, 14, 28, 29, 13].

After [30], the main three methods to deal with popularity
bias and exposure fairness in RS include i) pre-processing
methods (e.g. based on data sampling or item exclusion
[31]); ii) in-processing methods (based on regularization,
constraints and/or weighting of the training loss) [32, 33,
34], and iii) post-processing methods, where the scoring
function is perturbed using re-scaling, re-ranking and model
aggregation [35, 36, 37].

In the domain of Job Recommender systems, the research
has long been slowed down by the absence of public datasets,
preventing the reproducible assessment of the algorithms.
Indeed, the anonymization of HR-related datasets raises
many privacy concerns, all the more severe as such datasets
may involve vulnerable users. The RecSys challenge in 2017,
based on the Xing benchmark [38], has been instrumental in
the field [39, 40] (note that the Xing dataset does not involve
precise indications as to the locations of the job ads and the
job seekers).

As said, the most related approach to ours is ReCon [16, 4]
(see [41] for a survey). ReCon is an in-processing method
using entropy-based regularization similar to [42] (see also
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Figure 2: CareerBuilder-Small: Tradeoffs between the performance indicators for BCE, ReCon, JoLA-c, JoLA-0 and JoLA-oc. Top-left:
HR@10 vs Congestion. Top-right: HR@10 vs number of non-orphans. Bottom-left: Recall@10 vs Congestion. Bottom-right: Recall@10

vs number of non-orphans. (Better seen in color).
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Figure 3: CareerBuilder-Large: Tradeoffs between the performance indicators for BCE, ReCon, JoLA-c, JoLA-0 and JoLA-oc. Top-left:
HR@10 vs Congestion. Top-right: HR@10 vs number of non-orphans. Bottom-left: Recall@10 vs Congestion. Bottom-right: Recall@10

vs number of non-orphans. (Better seen in color).

[43], where the regularization is based on the Gini index) or
borrowing optimal transport ideas [44, 45] for [16]. More
remotely related is [19] using Optimal Transport and [18]
using envy-freeness and exposure, both in a post-processing
manner.

The main originality of the proposed JoLA lies in the
three proposed losses. All these losses aim to shape the
distribution of the market shares, though in different ways.
Specifically, the congestion metrics is optimal when market
shares are equal, and it takes very similar values for suf-
ficiently flat distributions. Quite the contrary, the orphan
metrics mostly require that no market share be too small;

the over-popularity of some job ads is only penalized in the
orphan-compound loss (Eq. 6). The diverse approaches thus
pave the Pareto front defined from the users and recruiters-
related metrics, enabling the designers to select the proper
loss depending on their context and priorities.

A potential weakness of JoLA is that it involves several
hyper-parameters (type of loss, weight & and weight fin Eq.
6). A key limitation of the main orphan loss (Eq. 4) how-
ever is that the so-called invisible job ads are not taken into
account in the back-propagation. The compound orphan
loss aims to alleviate this limitation. Further work is con-
cerned with reconsidering the learning schedule, and using



gradient clipping as an alternative to the use of weights «

and p.

6. Conclusion

A main contribution of the presented JoLA approach is to
explore several losses, aimed at controlling the distribu-
tion Djg of the market shares associated to the considered
job ads. The extensively studied congestion, that is the KL
distance of Djs and the uniform distribution, reaches its
optimum when all market shares are equal. Note that this
property is far from being satisfied in the whole interaction
matrix, where the distribution of the market shares presents
a majority of very unpopular job ads (with less than two
applications) and circa 30% very popular job ads. An opti-
mal recommendation policy in terms of congestion is thus
focused on reducing the popularity of the most popular jobs.

In contrast, the orphan loss (Eq. 4) reaches its optimum
when every market share is greater than some minimum
p. This property is very far from being satisfied in the con-
sidered public datasets. Note that it is even less satisfied in
PES datasets where a very significant fraction of the job ads
are invisible (receiving no applications).

Complementary results show that: i) for a same HR value,
the congestion and orphan metrics can significantly vary;
ii) for a same congestion, with decent HR value, the orphan
metrics can significantly vary. This observation is explained
as the orphan metrics defines a finer-grained assessment of
the market share distribution, than the c. Specifically, if the
orphan metrics reaches a good value, then the congestion
metrics reaches a good value too; but the converse does not
hold true.

As said, the goal of decreasing the number of orphan
or invisible job ads aims to two benefits: decreasing the
competition in the short run; unlocking the sleeping job ad
market, in the long run.

This approach opens several perspectives for further re-
search. A short term perspective is to prevent or decrease
the presence of invisible job seekers in the batch, through
enforcing that each item participates in at least one posi-
tive interaction.. An on-going perspective is to confront an
orphan-avoidance policy to the context of PES, and assess
its robustness w.r.t. human and computational priorities,
noting that the orphan phenomenon is significantly more
severe in PES data then in the public CB-S and CB-L datasets,
that are engineered to enforce the presence of sufficiently
many interactions in the whole matrix.
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Appendix

Details on the datasets

CareerBuilder-Small

Dataset Statistics:

Total unique users: 3876
Total unique items: 4337
Total interactions: 29944
Train interactions: 24316

Validation interactions:
Test interactions:
Combined Test+Val interactions:

1071
4557
5628

Unique users in train: 3876
Unique items in train: 4337
Unique users in validation: 247
Unique items in validation: 867
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Figure 5: Histogram of number of interactions (degree) of items
in CB-S

Average interactions per user (total): 7.73
Train interactions: 24316

Average interactions per user (train): 6.27
Validation interactions: 1071

Average interactions per user (val): 4.34
Test interactions: 4557

Average interactions per user (test): 4.33
Combined Test+Val interactions: 5628
Average interactions per user (test+val): 4.64
Unique users in train: 3876 (100.00%)
Unique items in train: 4337 (100.00%)
Unique users in validation: 247 (6.37%)
Unique items in validation: 867 (19.99%)
Unique users in test: 1053 (27.17%)

Unique items in test: 2480 (57.18%)
Overlapping users train+val: 247 (6.37%)
Overlapping items train+val: 867 (19.99%)
Overlapping users train+test: 1053 (27.17%)
Overlapping items train+test: 2480 (57.18%)

CareerBuilder-Large

Dataset Statistics:

Total unique users: 42346

Total unique items: 40542

Total interactions: 469813

Train interactions: 450670
vValidation interactions: 9453

Test interactions: 9690

Combined Test+Val interactions: 19143
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Figure 6: Histogram of number of interactions (degree) of users
in CB-L
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Figure 7: Histogram of number of interactions (degree) of items
in CB-L

Number of Interactions

Unique users in train: 42346

Unique items in train: 40542

Unique users in validation: 2701

Unique items in validation: 5227

Average interactions per user (total): 11.09
Train interactions: 450670

Average interactions per user (train): 10.64
Validation interactions: 9453

Average interactions per user (validation): 3.50
Test interactions: 9690

Average interactions per user (test): 3.63
Combined Test+Val interactions: 19143

Average interactions per user (test+val): 4.02
Unique users in train: 42346 (100.00%)

Unique items in train: 40542 (100.00%)

Unique users in validation: 2701 (6.38%)

Unique items in validation: 5227 (12.89%)

Unique users in test: 2672 (6.31%)

Unique items in test: 4847 (11.96%)

Overlapping users train+validation: 2701 (6.38%)
Overlapping items train+validation: 5227 (12.89%)
Overlapping users train+test: 2672 (6.31%)
Overlapping items train+test: 4847 (11.96%)
Overlapping users train+combined test+val: 4758
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