
École Normale Supérieure Paris-Saclay

3D Reconstruction using Implicit
Function Methods:

PiFU, NeRF, Novel View Synthesis,
Neural Rendering and more

Année de Rechercher Pré-doctorale à l'Étranger (ARPE)
at Fraunhofer IOSB

Author Supervisors

SolalNathan ThomasPollok
EmanuelAldea

2020�2021

This page would be intentionally left blank
: : :

if I did not wish to inform you about that.

Contents

1 Introduction and objectives 1
1.1 Motivation . 1
1.2 Presentation of the IOSB. 1
1.3 Related work at the laboratory . 1
1.4 Objectives . 3

2 Deep Learning and Computer Vision 5
2.1 Introduction . 5
2.2 The main paradigms . 5

2.2.1 Supervised Learning . 5
2.2.2 Unsupervised Learning. 6
2.2.3 Reinforcement Learning . 6

2.3 Arti�cial Neural Networks . 7
2.3.1 Linear Algebra . 8
2.3.2 Activation functions . 10
2.3.3 Hyperparameters. 12
2.3.4 Cost function . 12
2.3.5 Gradient descent . 13
2.3.6 Backpropagation . 16

2.4 Types of ANN. 17
2.4.1 Feedforward NN. 17
2.4.2 RNN . 18
2.4.3 CNN . 19
2.4.4 Other well known architectures . 20

2.5 Object detection and segmentation. 23
2.6 Summary . 25

3 3D Reconstruction 26
3.1 Introduction . 26

3.1.1 Problem statement . 27
3.1.2 Pinhole camera model. 27

3.2 Classical methods. 29
3.2.1 Classical pipeline. 29
3.2.2 Structure from Motion . 30
3.2.3 Bundle Adjustment . 31
3.2.4 Multi View Stereo . 32

3.3 Types of 3D Representation. 32
3.3.1 Image-based representation. 33
3.3.2 Voxel grid representation. 33
3.3.3 Point cloud representation. 33
3.3.4 Mesh representation . 34
3.3.5 Implicit function . 35

3.4 Methods on the types of 3D Representation. 36
3.5 Modern Approach. 37

3.5.1 Novel View Synthesis. 39

3.5.2 Neural and di�erentiable rending . 41
3.6 3D Human Reconstruction. 42

3.6.1 PIFu and the derivatives . 42
3.7 Evaluation metrics . 45

3.7.1 Accuracy metrics . 46
3.7.2 Performance criterion. 47

4 Mask2Mesh 48
4.1 Introduction and objectives . 48
4.2 Software used. 49
4.3 Input Data . 49

4.3.1 Original Image . 49
4.3.2 MaskArray . 50
4.3.3 3D Vertex Map . 50

4.4 The algorithm . 50
4.5 Triangulation . 51

4.5.1 The Delaunay triangulation . 52
4.5.2 Algorithms . 53
4.5.3 Implementation of the triangulation. 54
4.5.4 Removing unwanted triangles. 55

4.6 Output Data . 56
4.7 Performances . 57
4.8 Compression Rate. 57
4.9 Later modi�cation . 57

5 NeRF taxonomy 59
5.1 Introduction . 59
5.2 Theory . 59
5.3 Generalised methods. 60
5.4 Specialised methods. 60
5.5 Faster inference. 61
5.6 4D reconstruction. 61

5.6.1 Deformable . 61
5.6.2 Spatio-temporal. 62

5.7 Pose estimation. 62
5.8 Datasets . 62
5.9 Review papers. 63
5.10 Fewer input images. 63
5.11 Implementations details . 63

6 NeRF application 64
6.1 Introduction and goal. 64
6.2 NeRF implementation . 64
6.3 3D reconstruction experiments. 66
6.4 Creation of the dataset. 66
6.5 Premilinary results . 68
6.6 Experimentation . 70

2

6.6.1 The choice of the method . 70
6.6.2 First experiment . 71
6.6.3 Second experiment. 73

6.7 Voxelisation and meshing. 74
6.8 Conclusion. 74

7 Discussion and future works 76
7.1 Mask2Mesh . 76
7.2 NeRF taxonomy. 78
7.3 NeRF application . 78

8 Bibliography 79

A Appendix 86
A.1 The OBJ Speci�cation . 86
A.2 OBJ �le format cheat sheet . 88
A.3 Example of a textured cube and the appropriate material �le. 90

3

List of Figures

1 4D reconstruction for crime investigation. Image taken from [42]. 2
2 Pipeline of the desired result. 4
3 Example of principal components given by a PCA calculated on a multivariate

Gaussian distribution . 6
4 The agent-environment interaction in reinforcement learning. 7
5 An arti�cial neural network with 3 layers . 7
6 Example of a 28x28 image of a hand-written digit from the MNIST dataset and

the ground truth associated . 8
7 Diagram of a single neuron. 9
8 Sigmoid function graph. 10
9 Hyperbolic tangent function graph . 11
10 Recti�ed Linear Unit function graph . 11
11 Softplus function graph. 12
12 The impact of feature scaling on gradient descent. 14
13 A simple 3 hidden layers MLP. 18
14 A simple 3 hidden layers RNN. The hidden cells are reccurent cells, feeding the

last output back to themselves. 19
15 An example of CNN architecture. 20
16 The architecture of many di�erent classical NN taken from [105]. 22
17 Images from the CIFAR-10 dataset . 23
18 Segmentation of an indoor scene. 23
20 Pinhole Camera model. 28
21 Classical 3D reconstruction pipeline. 29
22 Classical 3D reconstruction pipeline from start to �nish. 30
23 Sparse model of central Rome using 21K photos produced by COLMAPs SfM

pipeline . 31
24 Bundle Adjustment optimisation on camera poses using Pytorch3D. 31
25 Dense models of several landmarks produced by COLMAPs MVS pipeline.. . . 32
26 Voxel representation . 33
27 Mesh representation . 34
28 Mesh representation . 35
29 Implicit function representation . 36
30 15 original cases of the Marching Cubes algorithm. 37
31 The Octree representation: the 3D equivalent of a binary search. 37
32 3D-R2N2 Structure . 38
33 3D-R2N2: Example of results . 39
34 NeRF architecture taken from [54]. 40
35 Images reconstructed from NeRF. 41
36 Neural Rendering results based on the IDR method. 42
37 PIFu architecture from [85]. 43
38 PIFuHD architecture from [86]. 44
39 Monoport architecture from [45]. 44
40 Monoport example results from [86]. 45
41 Final output of the texture OBJ �le viewed in MeshLab 48

42 Pipeline of the DevEnviro plugins used. 49
43 Di�erent triangulations for a given set a points. 52
46 Closeup of a triangulation . 55
47 Unwanted triangle which needs to be removed. 56
48 3D reconstruction using a MLP with a ReLU non-linearity as a baseline and

comparing it to the periodic (sine) activation representation (SIREN) 59
49 Reconstruction of 3D model of a cow using a toy version of NeRF. Based on a

code provided by the FAIR [73]. 64
50 Final reconstruction of the cow after20 000epochs 65
51 Uncurated generated faces, corresponding to the �rst 30 random seeds. Image

taken from the pi-gan paper [9]. 66
52 Example taken from the Lupo Datatset. 67
53 Sparse reconstruction using COLMAP . 68
54 Camera pose estimation, with poses converted into NeRF++ format. 69
55 Dense Delaunay reconstruction using COLMAP. 69
56 inverted sphere parametrisation for the outside NeRF network. Image taken

from the NeRF++ paper [119] . 70
57 Global view of the tensorboard training with the NVS, the depth map and the

loss and PSNR curves . 72
58 Example of a low PSNR image obtained after500 000iteration 73
59 Closeup the border of mesh generated with Mask2Mesh. 76
60 Mask R-CNN failing to �nd a contour on a simple example. 77
61 A simple cube, viewed with MeshLab. 87

4

List of Algorithms

1 Gradient Descent. 14
2 Adam . 15
3 Backpropagation . 17
4 Mask2Mesh. 51

1 INTRODUCTION AND OBJECTIVES

1 Introduction and objectives

1.1 Motivation

3D reconstruction is the ability to reconstruct 3D shape and appearance from 2D images.
4D reconstruction is temporally non-static 3D reconstruction. It is a fundamental problem of
computer vision. Like many problems in computer vision, it is deceptively easy to perform
for the human. The eyes and the brain have evolved over a very slow process to converge to
a complex and e�cient machinery to analyse the world through 2D images. This problem is
theoretically interesting and challenging, it had resisted researchers for decades [22] and might
continue to lay unexpected obstacles in our path in future decades.

4D reconstruction is also applied to and grounded in reality. It has many applications
ranging from medical diagnosis, urbanism, online shopping or even crime scene investigation.
I would like to further develop this last one, being one of the subject of interest of the VID de-
partment at Fraunhofer IOSB. Project VICTORIA is an European initiative to further improve
the crime detection and scene investigation �eld using modern technology developed in many
laboratories around Europe. According to the German police, in order to process one hour of
video footage, it requires eight hours of labour [42]. Automatisation is essential to speed up
this tedious and di�cult process.

A year long internship, or Année de Recherche Pré-doctorale à l'Étranger (APRE)is a
great opportunity for me to form a better understanding of arti�cial intelligence, machine
learning, scienti�c literature and more speci�cally the �eld of 3D reconstruction in which I will
be working. The �eld is very wide and the possibilities are limitless in term of development.

1.2 Presentation of the IOSB

Fraunhofer
Fraunhofer Society for the Advancement of Applied Research (Fraunhofer-Gesellschaft zur

Förderung der angewandten Forschung), or Fraunhofer for short, is a German research society
focused on applied research. It has many contracts with the industry while being based in many
di�erent laboratories across Germany (and a few in the rest of the world). It was founded in
1949.
IOSB

IOSB, which stands for Optronics System Technologies and Image Exploitation (Fraunhofer-
Institut für Optronik, Systemtechnik und Bildauswertung), is an information and communica-
tion technology laboratory created in 1967.
VID

The VID department (Video Exploitation Systems) works on automatic exploitation of
signals from imaging sensors, mostly images and video.

This year, for my ARPE I was working in Karlsruhe, Germany, where Fraunhofer IOSB
holds a laboratory.

1.3 Related work at the laboratory

An important contribution by the VID department for the VICTORIA project was to enable
4D reconstruction of crime scenes in order to facilitate crime scene investigation [42]. Another

Solal Nathan - ARPE Report 1 / 91

1 INTRODUCTION AND OBJECTIVES 1.3 Related work at the laboratory

contribution was the creation of a 4D reconstruction dataset for crime investigation, with mul-
tiple di�erent camera �lming a single scene, from di�erent time spans, some moving and some
static [67]. The 4D reconstruction was created using conventional pipelines in 3D reconstruc-
tion like COLMAP and humans are simple �at meshes. Finally, an immersive virtual reality
version of the scene was created to enable easy manipulation and more human-like viewing
angle of the scene.

Figure 1: 4D reconstruction for crime investigation. Image taken from [42]

Solal Nathan - ARPE Report 2 / 91

1 INTRODUCTION AND OBJECTIVES 1.4 Objectives

1.4 Objectives

There are di�erent objectives for this internship: some theoretical as learning the state of the
art of a certain domain and some applied as implementing a certain solution, hopefully on new
and challenging dataset.

Firstly, the main goal is to dive deep into a sub-�eld of computer vision: 3D reconstruction.
It is a vast �eld and it has many branches in itself that could be explored. The initial goal
of this internship is to be able to recreate a 3D object of a human being, given a set a of 2D
images of the person. The problem is di�cult due to the in-the-wild nature of the input data.
Multiple points of view and multiple, uncalibrated and unsyncronised, cameras can be used to
capture out original data. The georegistration, alphamating and bundle adjustment is already
realised beforehand. This work could be extended to other object classes such as cars or tree,
or even to a class agnostic, general algorithm. The �nal end goal is to be able to reconstruct a
4D reconstruction, which is a 3D reconstruction with the time component added. This can be
interpreted as a video of a 3D scene.

Secondly, understanding the �eld of 3D reconstruction is also required to understand, in a
broader sense, the fundamentals techniques of machine learning. Many techniques of learning
theory are �eld agnostic and could be applied to many di�erent problems. Moreover, another
mid-term goal was to create a simple project to create 2D meshes from 2D segmentation of
images. This program already exists in a pipeline used at the lab, but is actually ine�cient
and could be sped up signi�cantly. This program was latter named Mask2Mesh and more can
be learnt about it in Section 4. It has to be written in C++ and it will be part of a large
pipeline used to create the 4D reconstruction of scene. This problem is a good �rst approach to
understanding the broader picture of working with three dimensional data in computer vision.

A �rst approach considered was to use a PIFu-like technique. Training and testing state-
of-the-art algorithms with real world data. The method can then be further extended to make
better use of the multitude of information we have at hand. PIFu is a 3D reconstruction method
explained in Section3.6.1.

Solal Nathan - ARPE Report 3 / 91

1 INTRODUCTION AND OBJECTIVES 1.4 Objectives

2D video

PIFu-like
Network

Merge

environnement
(Cactus)

ROI
Keyframes

Instance
segmentation

textured
3D mesh

4D scene
reconstruction

Figure 2: Pipeline of the desired result

We will then address the issue we face accordingly. At �rst, a monocular approach can be
taken. Working with monocular data gives less information than the full information we have
at hand, but it is easier to work with, as it is more widely available in the wild and does not
create synchronisation issue between the di�erent points of views. A real-word dataset will
have non-standard point of views and some occluded parts. Working with a full frontal video
could be done in the �rst place to better �t the original context. It would then be interesting
to apply this knowledge on a more challenging dataset, resembling real-world data. At �rst,
the idea is to be able to recreate a full 4D scene of a person from a monocular point of view.
Many di�erent techniques will need to be used in order to achieve this goal.

Moreover, it would later be possible to transition to a multi point of view input data in
order to infer the maximum possible quantity of information from our dataset. Other interesting
issues to consider are the subject of computational costs. Deep learning algorithms are usually
intensive to train and even to infer with. For example, PIFuHD takes at least 8GiB of VRAM
and Monoport cannot run in real time without 2x2080Ti and a total of 11 GiB of VRAM.
Those state of the art 3D and 4D reconstruction algorithm are not suitable for consumer-grade
computers. Real-time inference is a essential part of our use case, yet reducing the memory
footprint of similar techniques is a challenging and essential development to generalise the use
of 3D reconstruction techniques.

Later the focus was taken o� human reconstruction and refocused around the new and
exciting techniques of 3D reconstructions such as NeRF. The idea is to be able to recreated
NeRF, understand it and all its rami�cation in the research �eld at the time to understand
which variant to apply in which situation. Finally it would be exigent to put this knowledge to
the test by creating from scratch a challenging dataset and applying the best state of the art
techniques to it.

Solal Nathan - ARPE Report 4 / 91

2 DEEP LEARNING AND COMPUTER VISION

2 Deep Learning and Computer Vision

2.1 Introduction

Arti�cial intelligence (AI), unlike natural intelligence demonstrated by animals and humans,
is intelligence demonstrated by machines. It could be described as a the study of agents
which takes decisions in order to a maximise the probability of the success of their goals,
regarding the information they gather from their environment. Is it also often refereed to as
the ability to mimic the human cognition, even if it not represent a limit to the ability of
AI. [84, 6] The term Arti�cial Intelligence was coined at a Dartmouth College Workshop in
1956 by McCarthy. At the time, the attendees failed to recognised the di�culty of the this
issue, thinking that all human labour would be replaced by AI within a generation. We cannot
talk about arti�cial intelligence without also mentioning Alan Turning and Alonzo Church who
laid the philosophical foundation from a computer science point of view. The Church-Turing
thesis stating that a universal Turing machine could compute any computable functions. If we
consider that the human brain only compute computable functions by self, it means that it
could be simulated by a computer, or that a computer could compute the same outputs given
the same inputs.

Machine Learning is subset of Arti�cial Intelligence, which learns from experience in
order to perform a given task (often prediction or decision making). One of the widely accepted
de�nition is given by Tom Mitchell: "A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E."[55].

Machine Learning has the ability to perform tasks that it has not been programmed for.
It is essential for certain task which are notoriously hard to create an extensive program for,
such as computer vision, email spam �ltering or recommender systems. Even if an expert
based approach (a more traditional approach to AI) has been attempted the in past to try to
solve such task, Machine Learning has vastly outperformed all of its competitors in these very
challenging domains [27, 2, 84].

Arti�cial Intelligence and Machine Learning are extremely vast domains and we will only
have a very quick overview of the tools needed to understand the rest of this work. We will
many focus on the explanation of Arti�cial Neural Networks and Statistical Learning.

2.2 The main paradigms

Machine Learning is often divided into three sub-categories. It could be split further down and
not all algorithm can �t into these categories. We will maintain this explanation as is for the
sake of simplicity.

2.2.1 Supervised Learning

Supervised Learning is built upon training data containing the input and the labelled output.
The idea is to learn a model of our data to be able to then predict which label to associate to
new, unseen and unlabelled data. It is often used for regression and classi�cation.

Regression is drawing a boundary to separate a set a data, algorithm such aslinear re-
gression , least squares,Support Vector Machines (SVM) and Neural Networks are used
in Supervised Learning.

Solal Nathan - ARPE Report 5 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.2 The main paradigms

Classi�cation is the problem to assign a class to a new unseen data. We can distinguish
between binary and mutli-class classi�cation. SVM, K-nearest neighbours (KNN), decision tree,
random forests and NN can be used for classi�cation. Some unsupervised learning algorithms
can be used as well.

The list given above is far from exhaustive and some algorithms (like KNN or SVM for
example) belong to both lists as they can be used for classi�cation and regression problems.

Classi�cation assigns a discrete value corresponding to the class while regression assigns a
real-valued output to the data.

2.2.2 Unsupervised Learning

In contrast to supervised learning,unsupervised learning does not required human-labelled
data. The goal of unsupervised learning is to detect pattern in data without supervision or
with minimal supervision. Two of the most widely used methods in unsupervised learning are
principal component analysis (PCA) and cluster analysis (also known as clustering).

PCA forms a set a principal components: a set of orthogonal vectors which forms an
orthonormal basis. They must �t the data at best, minimising the average square distance
error. For example, it can be used for dimensionality reduction.

Figure 3: Example of principal components given by a PCA calculated on a multivariate
Gaussian distribution

Algorithms which performs clustering are able to form cluster of similar looking data from
a set a unlabelled points. K-means clustering is an example of an algorithm which performs
cluster analysis.

2.2.3 Reinforcement Learning

Reinforcement Learning (RL) is the study of software agents which needs to take actions
in a given environment in order to maximise a cumulative reward [94].

Solal Nathan - ARPE Report 6 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

The Mathematical setting for RL lies in Markov decision process (MDP) to model the
environment and use dynamic programming (like the Bellman equation) to �nd an optimal
policy, giving the action to take for any given state to maximise the cumulative reward.

Figure 4: The agent-environment interaction in reinforcement learning

Often this very formal de�nition of RL is not usable in for real world problem and one has
to remodel the problem, for example given the agent only a partial view of the environment in
the form a partially observable Markov decision process (POMDP).

2.3 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN), or sometimes simply Neural Networks (NN) when the the
arti�cial nature is obvious from the context, are computer systems loosely inspired by biological
neural networks.

Figure 5: An arti�cial neural network with 3 layers

An ANN is composed of arti�cial neurons connected via edges. It creates a computational
graph which directed and weighted. It is also most of the time an acyclical graph. A signal can
go trough a neuron to the next one, it a real number and the output of a neuron is calculated
via a non-linear function taking into account the all of the input of the neurons. This function
is called an activation function. Neurons may have threshold, commonly called biases, which
conveys the idea that a input signal needs a certain strength to be passed.

Solal Nathan - ARPE Report 7 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

In a NN, neurons are arranged into layers. The input layer correspond to the size, or
dimension of our input data and the output layer correspond to the dimension of our output
data. There might be a variable number of hidden layers of variable size.

Let's take the famous example of the MNIST dataset in order to clarify this matter. The
MNIST dataset is a set of 28 pixels by 28 pixels grayscale images. It can be seen as a matrix of
28� 28 = 784coe�cients, each one ranging from0 to 255(on 8 bits of information). The image
only has one channel since the dataset is composed of grayscaled images. The images in the
dataset represent hand-written digits. Each image is also accompanied by a label, a number
from a 0 to 9, corresponding to the ground truth. In this case the ground truth is the class in
which the image lays.

The problem posed by the MNIST dataset is to create a classi�er with 10 classes to identify
with the highest success rate, in which class does one digit stand in without having to give the
computer a human-generated label.

Figure 6: Example of a 28x28 image of a hand-written digit from the MNIST dataset and the
ground truth associated

In this case our input layer would have786 neurons and our output layer would have10
neurons. The number of hidden layers and the size of each hidden layer will have an impact on
the network's performance. Finding optimal numbers for those values is beyond the scope of
this simple example. The size of the di�erent layers are called hyperparameters of the networks.
There exist many di�erent hyperparameters used in the learning process, but we will go over
some on them later.

2.3.1 Linear Algebra

Lets us consider the activation of a single neuron. It is simpler to present a diagram a single
neuron because it would get exponentially complex to represent every link and every weight if

Solal Nathan - ARPE Report 8 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

we were to represent multiple neurons. Nevertheless, we will calculate the activation of a full
layer afterward, leveraging the power of matrices and linear algebra to a compact notation.

�� g aj

w 0,j

w n,j

w i ,j

a0

ai

an

(b j)

activations from
the previous layer

input links

activation
function

output
(activion of
this neuron)

output links

input
function

Figure 7: Diagram of a single neuron

The valueswi;j are the weights and the valuebj is the bias. They are coloured in red to
denote them as the only values that can be tweaked during the learning process.

We can calculate the activation of an entire layer of neuron using the weight matrixW (L � 1)

between the layers(L) and (L � 1), the activation vector of the preceding layera(L � 1) and the
bias vectorb(L) of the current layer.

a(L) = g
�
W (L � 1)a(L � 1) + b(L)

�
(2.1)

This matrix representation is not only compact in a mathematical way, it also enable us to
use optimised libraries1 which are made for fast linear algebra computation.

The representation as vectors and matrices of the values of the equation2.1 are as follows:

a(L) =

2

6
6
6
4

a1

a2
...

an

3

7
7
7
5

; b(L) =

2

6
6
6
4

b1

b2
...

bn

3

7
7
7
5

; W (L) =

2

6
6
6
4

w1;1 w1;2 : : : w1;n

w2;1 w2;2 : : : w2;n
...

...
wn;1 wn;2 : : : wm;n

3

7
7
7
5

(2.2)

For the sake of simplicity we dropped the exponent on the indices inside the matrices. The
purpose of this equation2.2 is simply to give the position of each component of the matrix and
to specify its dimension. If we were to write the unabridged notation it shouldw(L � 1)

1;1 instead
of w1;1.

The weight matrix W (L � 1) is a (m � n)-matrix if the layer (L � 1) has n neurons and the
layer (L) hasm neurons.

1For example in Python we have Numpy which is optimised for tensor (nparray) calculation on CPU and
Tensor�ow or PyTorch to leverage the GPU computational power. Python being a very slow, interpreted
language, these libraries are just Python wrappers for low level C or C++ code.

Solal Nathan - ARPE Report 9 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

The matrix-vector dot product then respect the speci�edinput function such as:

a(L)
i =

nX

j =1

a(L � 1)
i w(L � 1)

i;j (2.3)

Or if we add the biases, like in the activation function in the equation2.1:

a(L)
i =

nX

j =1

a(L � 1)
i w(L � 1)

i;j + b(L)
i (2.4)

2.3.2 Activation functions

This idea of the section is not to give a zoology of all existing activation functions. We will ex-
plain the broader concept and give a few examples. The list given is far from exhaustive as there
exists a very large number of activation functions with di�erent advantages and disadvantages.

An activation function de�nes the output of a neuron given a set of inputs. While linear
activation functions are used in very simple networks like the linear perceptron, the non-linear
version of the activation function is more widely used as it enable the network to non-trivial
problems without having to be too deep. Such functions are called nonlinearities in the network.
With a biologically perspective, the activation function can be seen at the rate at which the
action potential �res in the cell. In its simplest form it can be binary, using a Heaviside function.
In this form it is essentially a threshold. Using non-linear activation functions in a two-layered
network can be proven to be a universal function approximator. This result is known as the
Universal Approximation Theorem . On the other hand, when multiple layers use the
identify (linear) as their activation function it can be shown to be equivalent to a single-layer
model.

But at the cost of the total number of parameter being higher in the case of a single layer.

Logistic sigmoid

� (x) =
1

1 + exp (� x)
(2.5)

4 2 0 2 4
z

0.0

0.2

0.4

0.6

0.8

1.0

(z
)

Figure 8: Sigmoid function graph

Tanh

Solal Nathan - ARPE Report 10 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

The hyperbolic tangent
g(x) = tanh (x) (2.6)

4 2 0 2 4
z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ta
nh

(
z)

Figure 9: Hyperbolic tangent function graph

ReLU
Before the introduction of the recti�ed linear units (ReLU), the sigmoid function (2.5) and

the hyperbolic tangent (2.6) were widely used as activation functions in neural networks.

g(x) = x+ = max (0; x) (2.7)

4 2 0 2 4
z

0

1

2

3

4

5

R
eL

U
(z

)

Figure 10: Recti�ed Linear Unit function graph

Softplus
It is a softened version of the linear recti�er

� (x) =
exp (x)

exp (x) + exp (0)
(2.8)

Solal Nathan - ARPE Report 11 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

4 2 0 2 4
z

0.0

0.2

0.4

0.6

0.8

1.0

\s
ig

m
a(

z)

Figure 11: Softplus function graph

The term hidden unit is sometimes used interchangeably with activation function. We have
here only covered a few functions, which are the most popular among deep learning algorithms.
Many other functions can be used. Many non-linear functions work very well. Being di�erential
is also a great advantage during the backpropagation process. It can be noted than for example,
ReLU is not di�erentiable at all points2. Some exotic functions likesin can sometimes be used
with success even if they are not the standard. Choosing the right activation function is still a
research subject today.

2.3.3 Hyperparameters

The learning process of an ANN is the action to tweak all the "knobs" corresponding the weights
and biases. The idea is that every number will have some impact over the output and that by
tweaking them we can achieved a better result that the initial randomly assigned weights and
biases. The tweaking of this parameters is not random, it follow a gradient descent algorithm
in order to converge to a localminima faster.

All the other parameters, the ones set before training and which remain constant as the
network learn are called hyperparameters. Hyperparameters include the dimension and the
number of hidden layers as well as the learning rate or batch-size.

Depending on the algorithm at hand, there is a multiple of possible hyperparameters to
choose from and which can greatly in�uence the �nal success rate of the algorithm as well as
the speed at which it converges to it.

2.3.4 Cost function

When working with neural networks, like many in many di�erent other optimisation problems,
it is important to de�ne a cost function. It will represent the metric the algorithm tries to
optimise in order to compare its performances and gauge if it is improving.

A simple cost function can be the can quadratic, similar to what is used in leasts squares.

C0 = (a(L) � y)2 = (ŷ � y)2 (2.9)

The cost function is often notedC(�) or J (�).

2It is still di�erential almost everywhere. The only point where it is no is zero.

Solal Nathan - ARPE Report 12 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

The cost function is sometimes refereed to as a loss function. More generally it can be
seen as an objective function. Generally being minimised, hence the name loss or cost, but
sometimes it can be maximised like a reward function in reinforcement learning for example.

Some of the most common loss functions used in machine learning include:

ˆ L1 loss (or MAE)

ˆ L2 loss (or MSE)

ˆ Kullback-Leibler (KL divergence)

ˆ Crossentropy

Depending on the case many other cost functions can be considered like Wasserstein distance
(Earth mover's distance) for probability distributions or chamfer loss to compare 3D objects.
These cost function will be developed further in a latter chapter.

2.3.5 Gradient descent

In order to minimise a function it is important to know about it's topology. There many
di�erent mathematical way to minimise a function. Is is part of the hill-climbing optimisation
problem (can be seen either as a hill or a valley). Some algorithms like BFGS can be used
and sometimes it is possible to �nd an optimal solution by solving the problem analytically,
by solving the normal equation using techniques as Penrose-Moore pseudo-inverse if needed for
example.

Most of the time the cost function de�ned for the problem is non-convex and it is very hard
to achieve a global minimum using an hill-climbing algorithm.

Nonetheless, hill-climbing, and more importantly the gradient descent based methods are
predominant to solve this problem.

The gradient is de�ned as :

r J (p) =

2

6
4

@J
@�1

(p)
...

@J
@�n

(p)

3

7
5 (2.10)

The value of a vector as pointp is tangent to surface and proportional to the steepness of
the hill.

In order to minimise our parameters� (being weights and biases in ANN), it is necessary
to go in the opposite direction than the one given by the gradient.

The algorithm for the Gradient Descent is as follows: At each step, compute the gradient at
the point p in the parameter space and the follow the gradient to descend. Since the gradient is
proportional to the steepness, it is wise to modify the parameter proportionally to the gradient.

j 2 [0; m]; � j := � j � �
@

@�j
J (�) (2.11)

With m being the number of training examples and� being the learning rate.
The algorithm can be summarised as follows:

Solal Nathan - ARPE Report 13 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

Algorithm 1: Gradient Descent
input : loss functionJ , learning rate �
output: parameters�
� any point in the space of parameters
loop until convergencedo

foreach � i in � do

� i � i � �
@

@�i
J (�)

end
endloop

The choice of the learning rate is key to ensure the rapidity and convergence of the algorithm.
On the one hand, A learning rate which is too high might lead to oscillation around aminima
and never converge. On the other hand, a learning rate which is too small like always converge
but might do so very slowly. Stopping criterion in numerical analysis are often based on a
certain error threshold" and a maximum number of iterationsN . This leads to poor results
of the gradient descent when the learning rate is not chosen well. The normalisation of the
parameters, or feature scaling enables faster convergence of the gradient descent algorithm. It
is often done through mean normalisation to have approximately a zero mean and dividing by
the range:

x1
x1 � � 1

s1
=

x1 � � 1

max(x i) � min (x i)
(2.12)

��1

��2

��1

��2

Figure 12: The impact of feature scaling on gradient descent

Many di�erent algorithm exists to perform gradient-based optimisation [81], I will try to
give a quick overview of the most important examples in this section.

The classical gradient descent algorithm is sometimes calledbatch gradient descent in
opposition to stochastic gradient descent (SGD). The batch gradient descent algorithm uses
a full-batch, ie the full training data, to update the network. This methods can be seen as M-
estimation and be dated back to 1951 stochastic estimation method proposed by Robbins and
Monro [80]. It will make one big step forward but this step will be very slow to compute. The

Solal Nathan - ARPE Report 14 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

idea of SGD and mini-batch gradient descent is to make smaller, imperfect steps, to converge
much faster towards the localminima.

The idea behind SGD is to estimate the gradient from a smaller batch3, randomly sampled
in the training data. It can be seen as a stochastic approximation of the gradient. It achieved
faster iteration in trade for lower convergence rate. Many variation of the SGD algorithm
exist like mini-batch gradient descent, the momentum methods, AdaGrad, RMS
Prop and many others. We will only focus on one of the most widely used optimiser today:
Adam . Adam was introduced in 2014 [40] and builds upon RMS Prop and Adagrad. Further
optimisation have been developed thereafter [75]. However, Adam is still the optimiser of choice
in machine learning. The proof of convergence of Adam is given in di�erent papers [40, 15].

Adam is a stochastic gradient descent algorithm based on the adaptive estimation of the
�rst and second order moments. Adam stands for Adaptative Moment Estimation. The idea
behind the algorithm is to estimate the �rst and second order moments via moving average
with exponential decay.

Algorithm 2: Adam
input : loss functionJ , learning rate � , exponential decay rates for the moment

estimates� 1; � 2, initial parameter vector � 0

output: parameters� t

// Initialisation
t 0 // initialise iteration
m [0; : : : ; 0] // initialise the first order moment estimate vector
v [0; : : : ; 0] // initialise the second order moment estimate vector
while � t does not meet stopping criteriondo

gt
@

@�t
J (� t � 1 // Compute the gradient

// Compute first and second biased estimates
mt � 1 � mt � 1 + (1 � � 1) � gt

vt � 2 � vt � 1 + (1 � � 2) � g2
t

// Compute corrected (unbiased) estimates

m̂t
mt

1 � � t
1

v̂t
vt

1 � � t
2

// Update the parameters

� t � t � 1 � � �
m̂tp
v̂t + "

end

Every operation on vector is done element-wise. Squaring and square-rooting are also
element-wise. For exampleg2 = g � g when � is the Hadamard product. According to the
authors, the method is "computationally e�cient, has little memory requirement, invariant
to diagonal rescaling of gradients, and is well suited for problems that are large in terms of
data/parameters". The default values of the hyperparameters given by the original paper and

3Strictly de�ned the SGD is calculated on every example while the mini-batch version of it is calculated on
a small, randomly sampled batch, which can take advantage on vectorisation to speed up calculation.

Solal Nathan - ARPE Report 15 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.3 Arti�cial Neural Networks

taken by many machine learning libraries as default [13][64] are usually not modi�ed, apart from
the learning rate � . The default values are:� = 0:001, � 1 = 0:9, � 2 = 0:999, " = 1 � 10� 8.

The original paper also introduceAdaMax based on the in�nite norm. Second order
methods which calculate or approximate the Hessian are outside of the scope of this brief
overview and will not be discussed here.

2.3.6 Backpropagation

In a feedforward neural network, inferring a result̂y from an input x requires to propagate
forward the activation through the network. It is called forward propagation. In order order
to train the network, the parameters of the networks (weights and biases) need to be updated.
The amount of change also needs to be computed. Thebackpropagation algorithm [82]
compute the gradient of each parameters by �owing backward the information given by the
cost function. The full algorithm can be seen in Algorithm3: Backpropagation [84]. This
version of the algorithm is only presented for a network containing weights but can be easily
extended to weights and biases without adding complexity.

A computational graph has to be created in order to be able to go forward and backward
in the neural network. This is done automatically by every modern machine learning library.
Another common addition of modern machine learning libraries is to enable automatic di�eren-
tiation (AD), like in PyTorch's autograd [64]. Numerical di�erentiation is slow and prone to
accumulating numerical errors while symbolic di�erentiation is often used to have exact result
is it even more ine�cient and di�cult to perform. It either needs human intervention to take
the derivative of all the functions once and hard code them or a symbolic mathematical engine,
which is extremely slow and not suitable for the pace required for machine learning.

Numerical errors encounters by doing numerical di�erentiation is especially not wanted
because it would worsen the problem ofvanishing gradient already present in numerical gra-
dient descent-based methods. Some regularisation methods can be used to tackle this issue like
regularisation of input values or L1 normalisation to create sparse models. Other regularisation
methods include early stopping to avoid over �tting, batch normalisation, dropout, bagging,
ensemble learning method and many more. Some �ne tuning and transfer learning can also
serve this purpose.

Solal Nathan - ARPE Report 16 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.4 Types of ANN

Algorithm 3: Backpropagation
input : Training examples (input x and ouptut y), learning rate � , network with L

layers, weightswi;j and activation function g
output: Trained network
while some stopping criterion is not satis�eddo

// Initialisation
� vector of errors index by network node;
foreach weightwi;j in the network do

wi;j random number (within the normalisation range)
end
// Forward propagation
foreach node i in the input layer do do

ai x i

end
for l = 2 to L do

foreach node j in layer l do
zj

X

i

wi;j ai

aj g(zj)
end

end
// Backward propagation
foreach node j in the output layer do

�[j] g0(zj)(yj � aj) // aj = ŷj

end
for l = L � 1 to 1 do

foreach node i in layer l do
�[i] g0(zi)

X

j

wi;j �[j]

end
end
// Update weights
foreach weightwi;j in the network do

wi;j wi;j + � � ai � �[j]
end

end

2.4 Types of ANN

2.4.1 Feedforward NN

The simplest type of NN is the perceptron. It is a simple, one layer network which only serve
a purpose of remembering certain parameters. It can be seen as a very simple binary classi�er:

f (x) =

(
1 if W � x + b > 0;

0 otherwise

Solal Nathan - ARPE Report 17 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.4 Types of ANN

It is a a threshold function, and it can be shown to have restrictive limitation. For example,
it is not able to �t a XOR function has the decision boundary can be �tted to it. More generally,
the learning process does not converge if the input set is not linearly separable.

The natural follow up to the perceptron is amultilayer perceptron (MLP) which is the
most common type offeedforward neural network . It is a fully connected network of at
least two layers. Fully connected layers means that every weights from one layer are connected
to every weight in the next layer.

input
layer

hidden layers

output
layer

depth

width

Figure 13: A simple 3 hidden layers MLP

It is a very general approach and enables the NN to approximate any reasonable function
under certain hypotheses. This result is called the Universal approximation theorem which we
already mentioned previously.

From a graph theory perspective, feedforward neural networks are only connected in an
acyclical manner, forming aDirectionnal Acyclical Graph (DAG) . As the network is fully
connected in the case of an MLP, the subgraph composed of two layers is acomplete bipartite
graph (or biclique) . It can easily be shown that the number of connections (edges) between
a layer of width n and an another layer of widthm is nm.

2.4.2 RNN

The Reccurent Neural Network (RNN) can be seen as a generalisation of the MLP. It
does not have the acyclicity restriction. They are used to process sequential data. The data
of the previous iteration can be fed back into the network, enabling a temporal coherence that
a simple MLP cannot have. An MLP, at inference time, will always execute independently to
previous results. An RNN on the other hand, will strongly depend on previous results. An
analogy can be made here with Markov chains, depending on previous results and being useful
to model time or causal-dependent phenomenons. There are based on the work of Rumelhart,
Hinton and Williams [83].

Solal Nathan - ARPE Report 18 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.4 Types of ANN

input
layer

hidden layers

output
layer

depth

width

Figure 14: A simple 3 hidden layers RNN. The hidden cells are reccurent cells, feeding the last
output back to themselves.

RNN are used in varied applications like speech recognition, continuous and connected
handwriting recognition, audio and video analysis, stock market price and generally in time
series data.

RNN are distinctinc from classical MLP, having feedback connection making them cyclical.
There are two types of RNN, the �nite impulse type which can be unfolded and the in�nite
impulse type which cannot.

Sharing network parameters is an other way to create an recursion and it enables the network
to be able to deal with di�erent size or length of input.

One of the most prohiment RNN-based method is theLong Short Term Memory
(LSTM) [34]. The structure of the LSTM solves the problem of vanishing or exploding gradi-
ents that appear during the backpropagation of classical RNN. LSTM are used in a very large
number of research and commercial application. For example it has been used in OpenAI Five
playing Dota2. It has recently been outperformed and replaced by attention-based mechanism
such asTransformers [104] which are prevalent today in Natural Language Processing (NLP)
and Computer Vision (CV).

BERT [17] and GPT [71] are transformer-based methods which are breakthrough in NLP
and more precisely in language models. They are having praised by the scienti�c community
and highly publicised in the media for there impressive performances.

GPT-3 [8] is a large language model owned by Microsoft and developed by OpenAI. The
quality of the textual output is of di�cult to distinguish from human generated text. This
result is a impressive research result, but is considered too dangerous by the authors to be
released publicly. A public API can be given access to by the owners and the source code, and
more importantly the weights of the network have not been released to the public.

2.4.3 CNN

Convolutional Neural Networks , sometimes called ConvNet or CNN for short, are neural
network architectures which use the fact that input data are images. Information in images
are structurally arranged such as local information is more important, a local patch around
a certain pixel is likely to contain relevant information to solve most image-based problems.
In this case, convolution is a classical solution to handle this type of data. Implementing a
convolution-like structure inside the neural network greatly reduces the number of parameters
in the network. It is way a to encode a strong prior into the structure of the network itself.

Solal Nathan - ARPE Report 19 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.4 Types of ANN

fully connected
layer

input
layer

output
layer

Conv2D
and

Pooling

Figure 15: An example of CNN architecture.

This neural network architecture di�ers from a conventional fully connected one. A CNN
is composed of Conv layers, Pooling layers, non-linear activation functions (such as ReLU)
and �nally fully connected layers. The Pooling and the activation function are not layers and
do not have weights themselves but are sometimes referred as layers in order to simplify the
explanation. A conv layer is a like a fully connected layer, only connecting the few pixels around
together, with a certain �lter size. The �lter size has the same sense here that the one given
in classical computer vision, e.g. with a Gaussian �lter. The pooling layer is a down-sampling
operation. The entire network is compose of multiple convolutional blocks followed by a few FC
layers. A convolutional block is composed of a conv layer, a pooling layer and a non linearity.

2.4.4 Other well known architectures

There exist a vast zoology of neural networks architectures. A small and non exhaustive list is
given here:

ˆ MLP

ˆ LSTM

ˆ Tranformers

ˆ Attention mechanims

ˆ Autoencoder (AE)

ˆ Variational Autoencoder (VAE)

ˆ GAN

ˆ Denoising AE

ˆ Sparse AE

Solal Nathan - ARPE Report 20 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.4 Types of ANN

ˆ CNN

ˆ FCN

ˆ U-Net

ˆ AlexNet

ˆ VGG net

ˆ GoogLeNet

ˆ . . .

Some of them are represented in the following diagram:

Solal Nathan - ARPE Report 21 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.4 Types of ANN

Figure 16: The architecture of many di�erent classical NN taken from [105]

Solal Nathan - ARPE Report 22 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.5 Object detection and segmentation

2.5 Object detection and segmentation

There a many di�erent tasks in computer vision. They are related to each other and sometimes
similar. A special attention will be given in this section to the tasks related to object detection,
semantic segmentation and instance segmentation. [117]

Image classi�cation is the ability for an algorithm to assign a label to an image, or to be
precise, to a assign a probability distribution in the set of possible classes to a given image.

A simple example is often given on MNIST [43]. However, for the sake of diversity we will
use CIFAR-10 in this example. [43]

Figure 17: Images from the CIFAR-10 dataset

After learning with many examples from di�erent classes, given a new, previously unseen
image, the algorithm will output a probability distribution relative to it's uncertainty in which
to classify the image.

For a given image, object detection is the ability to detect the di�erent object within an
image. It can be seen as superset of the image classi�cation task.

Furthermore, it can be important for some applications to use a pixel-algined mask for each
class. The idea is to cluster together part of the image that belong to the same semantic class.
Every pixel of the image should be assigned a class, with the possibility to detect the classify
a pixel as background if no object is present.

Figure 18: Segmentation of an indoor scene

This task is harder than object detection due the the very thin information required as

Solal Nathan - ARPE Report 23 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.5 Object detection and segmentation

an output. It enables to discriminate between di�erent classes, and also to discriminate the
background, on a pixel-wise value.

Finally, instance segmentation is the ability to have a di�erent mask for every instance of
an object in a given image.

(a) Semantic segmentation (b) Instance segmentation

Thresholding methods such as Otsu's method can be used to create a binary mask from the
segmentation.

Solal Nathan - ARPE Report 24 / 91

2 DEEP LEARNING AND COMPUTER VISION 2.6 Summary

2.6 Summary

In the section, a rapid overview of some of the most basic machine learning theory and computer
vision examples were given. A presentation of the three main paradigms was given.

Supervised learning is learning through labels, every example has a ground truth associated.
Most of the time is it used for regression or classi�cation work. For example, recognising hand
digits with MNIST using a simple CNN. Unsupervised learning, on the other hand, does not use
any labels. For example, it can bundle data according to some metric or be used to do principal
component analysis, which in term can be used to reduce dimensionality by loosing the least
amount of information possible. It has the advantage of not relying on human made data and
thus requiring no supervision. Finally, reinforcement learning makes a agent learn through its
environment by giving it reward when it perform correctly and punishing it otherwise. It aim
to, in term, learn an optimal policy about the environment it evolves in.

A very common method in Machine Learning, and especially Deep Learning, is the use of
Neural Networks. A simple graph of weights, biases and non linear activation function which
leads to an universal function approximator. A Network with many hidden layers is considered
deep and has proven in the recent years to be able to outperform the competition in many
di�erent tasks. Gradient descent and Backpropagation are optimisation algorithms necessary
to train these networks and enable them to learn. Adam is the most widely used optimiser
today.

Computer vision is the �eld of arti�cial intelligence which tries to give computers the abil-
ity to understand the world through images, similar the human vision. Object recognition
and semantic segmentation are fundamentals problems in computer vision, deceptively easy to
perform for a human, but extremely di�cult for an algorithm. CNN are the most fundamental
tools to solve these problems today, leveraging the power of 2D convolution and pooling. Al-
gorithms like YOLO or Mask R-CNN, trained on very large image databases like Imagenet are
State-of-the-Art to perform semantic or instance segmentation, sometimes even in real time.

Solal Nathan - ARPE Report 25 / 91

3 3D RECONSTRUCTION

3 3D Reconstruction

3.1 Introduction

The reconstruction problem is a fundamental problem in computer vision. It is the problem of
reconstructing the shape and the appearance of a 3D object given one or more images. It is a
long standing problem which got many advances with the advent of Deep Learning techniques
since 2015. More recent techniques based on implicit representation and neural rendering have
also been appearing since 2019. The �eld is advancing quickly and many new techniques emerge
each year.

The problem is ill-posed because not enough information is given by a set of 2D images
to be able to reconstruct a 3D object. It can be seen as the inverse problem of rendering.
Some techniques in the past have used a large number of pictures from calibrated cameras with
known intrinsic and extrinsic parameters. It is the case for example of bullet time techniques
or scanners. As every ill-posed problem, in order to solve it, it is necessary to use injecta
priori information about the subject to our model. It is believed to be possible because the
human brain is capable of retrieving a good approximation of the 3D shape and appearance
of an object based on a single image. This is due to an extensively large amount of training
beforehand, amounting to a large quantity ofa priori information.

It has a wide range of applications in real life including, but not limited to:

ˆ Computer graphics

ˆ Robot navigation

ˆ Telepresence

ˆ 3D printing

ˆ Cultural heritage archival

ˆ Crime scene investigation

A vast number of approaches have been investigated in order to solve this problem. The
input data can vary: it can be RGB images, RGBD images (with depth information), sometimes
there is 2D or even 3D supervision. It is also possible to be based on 2.5D sketches like normal
maps or segmentation maps, compute them from the RGB image or not use them at all.
Images can originate from a single camera (single POV) or multiple ones. The size of the batch
of images can greatly vary, from thousand in older methods to a single one in recent approaches.
If there are multiple cameras, they can synchronous or not and can have a di�erent intrinsic
values. It is possible to work without knowing the intrinsic and extrinsic values of the cameras.
Finally the model can be static/rigid which means that is does not change over time, but
it can also be non-rigid, leading to non-rigid reconstruction (sometimes called spatio-temporal
reconstruction). Some models work with rigid reconstruction and learn a deformation map form
the rigid model to the �nal model to overcome this problem. This is not to be confused with
4D reconstruction which is the video equivalent of 3D reconstruction and in which the subject
can independently be rigid or not [30]. 4D reconstruction a technique used to reconstruct a 3D
scene along a time axis. It can be interpreted as video equivalent of a 3D scene reconstruction.
Subjects in a 4D scene be rigid but moving or non-rigid.

Solal Nathan - ARPE Report 26 / 91

3 3D RECONSTRUCTION 3.1 Introduction

Concerning the number of images in the input set, in recent techniques it is usually lower
than 100in the most demanding techniques such as NeRF, but most of the time lower than 10.
In the extreme caseN = 1 like in PIFuHD for example. In this extreme case it is not possible to
leverage the information gained through motion parallax thanks toStructure from Motion
(SfM). These techniques rely even more on a priori information in order to reconstruction a
model with highly sparse information.

The goals of the di�erent techniques which attempt to tackle 3D reconstruction di�er,
sometimes the �nal goal is to reconstruct a 3D object, which can be represented in many
di�erent ways and sometimes it is to be able to create a new point of view on the subject such
as in Novel View Synthesis (NVS) techniques.

3.1.1 Problem statement

Given a set of unordered and unlabelled images, which can be provided from one or multiple
cameras, which can themselves be static of moving through the scene, 3D reconstruction is the
ability to reconstruct shape and appearance of the 3D object or scene depicted in the images. It
can be seen at the inverse problem of rendering since it is necessary to extract 3D information
from the 2D projection of this original 3D information.

4D reconstruction is the ability to reconstruct a 3D scene over time. The input can be
images or videos. The videos do not have to be synchronised or even span over the same time
frames.

4D reconstruction can be static (the object is non-deformable) or non-static (the object can
change over time). In the latter case, it can also be called 3D spatio-temporal reconstruction.

Furthermore, some other assumptions can be made in order to turn this problem from ill-
posed to solvable. One of them is to consider that the surfaces are rigid Lambertian textured
surfaces. Lambertian textures are ideally mate surface (perfectly di�used re�ectance), which
has for e�ect to produce the same appearance when seen from any perspective. This would
not be the case for a shiny or glossy surface, which would re�ect light di�erently at di�erent
camera angles. This property, like many other, is essential for the unicity of the solution. Often
many di�erent geometries can explain a set of images and the algorithm as to choose the most
probable scenario.

3.1.2 Pinhole camera model

In order to model the camera and its parameter it is necessary to construct a mathematical
framework of the camera and its parameters. Most MVS algorithms rely on additionala
priori knowledge to overcome the ill-posed problem, and the most common addition are the
parameters of the camera associated with each image.

The camera projection model most widely used is the pinhole mode, see Figure20. It is
simple, yet have sensible assumptions and can be be discarded for a more complex models in
case like �sh-eye camera (very wide angle with distort straight lines) or rolling shutter used on
fast moving objects [22, 31].

The pinhole camera model can be represented by a3� 4 projection matrix P. This matrix

Solal Nathan - ARPE Report 27 / 91

3 3D RECONSTRUCTION 3.1 Introduction

can be decomposed to extract the intrinsic and extrinsic parameters as so: [31]

P =

0

@
f x s cx

0 f y cy

0 0 1

1

A

| {z }
K

�

0

@
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

1

A

| {z }
[Rjt]

(3.1)

K is known as the intrinsics matrix, it is composed of parameters intrinsic to the camera
such as the skews (usually 0), principal point (cx ; cy) and focal lengths(f x ; f y) (equal to one
another if pixels are assumed to be squares).[Rjt] is the extrinsics matrix, it is composed of
parameters extrinsic to the camera as the rotationR and the translation t of the camera. The
position is always de�ned up to a scaling factor since we are usually working with homogeneous
coordinates for simplicity.

real object

focal length

virtual object

pinhole real object

Figure 20: Pinhole Camera model

Solal Nathan - ARPE Report 28 / 91

3 3D RECONSTRUCTION 3.2 Classical methods

3.2 Classical methods

3.2.1 Classical pipeline

Figure 21: Classical 3D reconstruction pipeline

In classical 3D reconstruction methods, the pipeline is straightforward as seen in Figure21.
The �rst step is camera pose estimation: using points of interest it is possible to construct one-
to-one correspondence between every pair of images. Algorithms likeSIFT (Scale-Invariant
Feature Transform) [51] can be used for feature detection and thenRANSAC (random sample
consensus) [20] for the matching. This approach is similar to what we can �nd in panorama
stitching. Then a bundle adjustment algorithm solves an optimisation problem to �nd better
camera poses. Finally MVS can be used to reconstruct a sparse reconstruction. Some methods
are further used to have the silhouette (visual hull methods), the 2.5D sketches like the normal
maps or the depths maps and �nally 3D dense point cloud, meshes and textures. It can be seen
in Figure 22 [87, 88, 22].

Solal Nathan - ARPE Report 29 / 91

3 3D RECONSTRUCTION 3.2 Classical methods

Figure 22: Classical 3D reconstruction pipeline from start to �nish

3.2.2 Structure from Motion

Structure from Motion is a method used to estimate 3D parameters from a 2D image sequence.
Human beings and other animals have the ability to estimate depth throughmotion parallax ,
i.e by moving around an object.

SfM algorithms take a sequence of 2D images as an input and output the parameters of
the camera for every image as well as a set of tracks for every 3D points visible from multiple
images.

A track is the 3D coordinates of a reconstructed 3D points and the list of its 2D projections
on each image via the camera projection, i.e. on a subset of the 2D images.

The classical pipeline for a SfM algorithm is usually as follows [22]:

ˆ Detect 2D features in each image

ˆ Match 2D features

ˆ Construct the tracks

ˆ Solve SfM model using tracks

ˆ Optional: Bundle Adjustment

Solal Nathan - ARPE Report 30 / 91

3 3D RECONSTRUCTION 3.2 Classical methods

Detecting 2D features in each image can be done using a feature detector or descriptions
like SIFT. There also exists many di�erent algorithms to perform feature matching. Given
noisy matches, RANSAC can create a robust estimate of the SfM model for 2 views.

Figure 23: Sparse model of central Rome using 21K photos produced by COLMAPs SfM
pipeline

For city-scaled reconstruction, using crowd sourced images from the internet, it becomes
computationally exceedingly expensive to calculate matches between every pair of photo, as
the number of possible match grows exponentially with the number of pictures.

3.2.3 Bundle Adjustment

Bundle Adjustment (BA) is a mathematical optimisation that can be applied after SfM retrieved
the tracks and camera parameters. It aims to re�ne all of the aforementioned parameters. Given
of set of camera parametersf Pi g and a set of tracksf M j ; f mj

i gg. The camera index is noted
i and the tracks index in notedj , such asM j is the 3D coordinate of the track andmj

i is the
2D coordinate of the pixel corresponding the thej th track projected onto the 2D image in the
i th camera.

Figure 24: Bundle Adjustment optimisation on camera poses using Pytorch3D

Solal Nathan - ARPE Report 31 / 91

3 3D RECONSTRUCTION 3.3 Types of 3D Representation

Bundle adjustment can then be expressed as the minimisation of thenon-linear least
squares error:

E(P; M) =
X

j

X

i

vij jPi (M j) � mj
i j

2 (3.2)

Where vij denoted the binary variable that equal1 if the point M j is visible on the camera
i and Pi (M j) is the predicted 2D image coordinate of the 3D pointM j of the camerai using
parametersPi

4.
This can be interpreted as minimising thereprojection error between the image location

of observed and predicted images. Often,Levenberg-Maquardt is used in order to solve this
non-linear least squares problem [103].

3.2.4 Multi View Stereo

Multi View Stereo (MVS) takes the output from SfM and creates a 3D point cloud from it. If
the camera parameters and the tracks are known, matching pixels from one image to another
becomes easier. The 2D matching problem, commonly found in panorama stitching or optical
�ow becomes a 1D problem. Each pixel in an image can generate a 3D optical ray going through
the camera centre of the image, �nding corresponding pixels on other images using the created
track.

The �nal result is a dense point cloud as shown in Figure25.

Figure 25: Dense models of several landmarks produced by COLMAPs MVS pipeline.

Modern MVS software usually include SfM, BA and MVS, like in PMVS by Furukawa and
Ponce [21] or the more recent COLMAP by Johannes Schönberger et Al. [88, 87]. At the end of
the sparse and dense point cloud reconstruction, some MVS pipeline optionally performs mesh
reconstruction using Poisson reconstruction or Delaunay reconstruction.

3.3 Types of 3D Representation

There exists many di�erent ways of representing data, some of them are classical and intuitive,
but some are not and yet yield excellent results.

4Here a distinction is made between image, as if a di�erent camera took every single image. In reality it is
often not the case, unless it need to be assumed in some special cases like crowd sourcingfrom the internet.
Otherwise it is possible to specify that multiple images are taken from the same camera,i.e. that they share
the same intrinsic camera parameters.

Solal Nathan - ARPE Report 32 / 91

3 3D RECONSTRUCTION 3.3 Types of 3D Representation

3.3.1 Image-based representation

Image-based representation is rarely used today, it consists of joining together 2D images at the
right place to give the illusion of 3D. It is still used today for some applications like panorama,
photo-sphere or Street View.

3.3.2 Voxel grid representation

It is a discretisation of the 3D world into a grid. It is the simplest way imaginable to represent
3D data into a computer as it is already used in 2D to represent raster-based images. It also
makes it easy to use with neural networks and classical tools like convolution.

However, it is extremely memory ine�cient as it as cubic memory requirements, which
become an issues quickly, even for what is considered low resolution compared to images.

Finally, as we can see in the Figure26, it su�er from the L1 bias, or Manhattan world bias.
The structure represented will be di�erent if the axis are even slightly rotated.

Figure 26: Voxel representation

3.3.3 Point cloud representation

Point cloud or point sets are another type of 3D representation. They can be sparse or dense,
both of which generated are during a classical MVS pipeline. It is a discretisation of the
3D surface of an object into 3D points, and it does not model topology. More importantly
for certain applications, point cloud-based representation are not watertight. Global shape is
usually well encoded, but a signi�cant loss of �ne details appear by using this representation.

Solal Nathan - ARPE Report 33 / 91

3 3D RECONSTRUCTION 3.3 Types of 3D Representation

Figure 27: Mesh representation

3.3.4 Mesh representation

Meshes are classical representation outside of the Machine Learning and 3D representation
�eld. They are the most prominent type of representation nowadays in computer graphics even
if some implicit based representation like metaballs also exist. [3] It has become one of the
output possible of 3D reconstruction algorithms in the recent years. [28].

It is a discretisation into vertices and faces. Like other classical methods it is limited by the
granularity of the data, �ne details are hard to encode without a high memory cost. Finally, it
either require a class-speci�c template to model an object or will lead to self-intersection (poor
IoU).

Solal Nathan - ARPE Report 34 / 91

3 3D RECONSTRUCTION 3.3 Types of 3D Representation

Figure 28: Mesh representation

For more details about the OBJ speci�cation, a �le format for used for mesh representation,
see AppendixA.1.

3.3.5 Implicit function

The idea of implicit function representation is to have a mathematical function delimiting the
interior of a surface from the exterior a surface. It can simply be a binary occupancy �eld:1
inside the surface and0 outside the surface5. It can also be a probabilistic occupancy �eld,
taking any continuous value between0 and 1. Finally, sometimes the Signed Distance6 Function
(SDF) is used [62]. It computes the distance from the surface, counted negatively on one side
of the surface and positively on the other side.

From these representation it is easy to determine an isosurface by taking every point which
have the same value. More importantly, the boundary between the exterior and the interior,
corresponding to the isosurfacef (x) = 0 is the actual surface of the object represented.

It can be interpreted as thedecision boundary of a non-linear classi�er:

f � : R3 � X ! [0; 1] (3.3)

With (x; y; z) 2 R3 the 3D coordinates andX the conditions applied to our model. The
conditions are usually as set of images, the pixels of an image or the encoding of an image,
but some additional data are usually added like intrinsic and extrinsic camera values for each
image.

This method has many advantages: it is not limited in terms of granularity as it represent
a continuous function, it is memory e�cient and it can model arbitrary topology7.

5The Jordan-Brouwer theorem helps us here. Roughly, it states that a 2-sphere (up to homeomorphism)
always dividesR3 into two connex parts, and the 2-sphere itself constitute the border of the those two parts.

6It is not strictly a distance, as of mathematical rigour, but close to it
7not limited to genus 0 surfaces

Solal Nathan - ARPE Report 35 / 91

3 3D RECONSTRUCTION 3.4 Methods on the types of 3D Representation

Figure 29: Implicit function representation

3.4 Methods on the types of 3D Representation

There exists many di�erent methods to convert one 3D representation to another:

ˆ Mesh to point cloud: vertices extraction

ˆ Point cloud to mesh: normal and face estimation

ˆ Voxel to point cloud: indexation

ˆ Point cloud to voxel: approximation and occupation

ˆ Voxel or implicit to mesh: marching cubes

This last method is one of the most interesting for machine learning based application. Rep-
resenting 3D data as implicit functions encoded by MLPs are e�cient but there no mainstream
rendering framework like Blender than can render images from neural networks.

In order to retrieve the 3D mesh, most of the time themarching cubes algorithm is
performed. The marching cubes algorithms is basically a lookup table for all the possible cases
of for 8 neighbouring points sampled and how to convert them to a mesh. The original paper
publishing the marching cubes algorithms used symmetry and rotating to boil down the 256
cases to only 15 than can be seen in the Figure30[50]. There already exist o� the self solution to
perform marching cubes on 3D occupancy �eld and especially ones encoded as neural networks
like the cubify method in Pytorch3D [73].

Solal Nathan - ARPE Report 36 / 91

3 3D RECONSTRUCTION 3.5 Modern Approach

Figure 30: 15 original cases of the Marching Cubes algorithm

It was latter discovered that 33 cases were needed in order to solve all the issues the original
algorithm had. Some smarter sampling strategy like Octree-based representation of Gaus-
sian distributed spheres are used for further gain memory and computational speed [85, 86].
Octree-based representation are also used in OcNets in order to apply 3D convolution to 3D
reconstruction [53, 66].

Figure 31: The Octree representation: the 3D equivalent of a binary search

Some modern techniques, as seen in the NVS and Neural Rending sections, found a way to
never have to extract the mesh through marching cubes and yet be able to render 2D images
from implicit representations.

3.5 Modern Approach

Since the advent of modern deep learning techniques, many di�erent directions of research
emerged in 3D reconstruction. Large 3D object database like ShapeNet or Human3.6M encour-

Solal Nathan - ARPE Report 37 / 91

3 3D RECONSTRUCTION 3.5 Modern Approach

age the rapid development of those techniques. Their size, breadth and annotation details are
essential to training large deep learning networks [10, 37].

A wide variety of datasets, real or synthetic, followed there after, contributing to the research
needs [100, 70, 1, 68, 4, 118, 121, 26, 93]. Many papers also contribute a new dataset like [32].

A wide variety of techniques were developed, using many di�erent types of 3D representation
started using these new datasets and deep learning techniques to further the research in 3D
reconstruction [28, 111, 112, 14, 44].

Figure 32: 3D-R2N2 Structure

Solal Nathan - ARPE Report 38 / 91

3 3D RECONSTRUCTION 3.5 Modern Approach

Figure 33: 3D-R2N2: Example of results

3.5.1 Novel View Synthesis

Novel View Synthesis is the task of generating new and unseen views of a scene, given input
images. A simple instance of novel view synthesis is image interpolation. Without any deep 3D-
aware knowledge it is hard to obtain results that are deceptive for the human eye. However,
the �eld had matured recently and many methods are capable of generating photo-realistic
results [90, 108, 12].

Some classical NVS methods are still used today and achieve great results, [79, 78] but they
are the not the main focus of our interest.

Especially, the recent advances in Neural Radiance Field (NeRF for short) had lead to many
papers and new techniques that yield impressive results [54, 119, 52, 115, 16, 5, 92, 63].

NeRF has a simple architecture: an MLP. The inputs are(x; y; z; �; �): the 3D coordinates
and viewing direction at each point in space. The output is(r; g; b; �): the colour and the
output density. It is a small network with 9 layers and 256 channels. In order to obtain high
frequencies in the reconstruction, a Fourier feature encoder is used [95]. Fourier feature encoding
is a method to solve the problem of high frequencies in implicit function representation, as is
the recent SIREN which uses Sine activation functions inside the network instead of feature
encoding before the network to obtain similar results [91].

Solal Nathan - ARPE Report 39 / 91

3 3D RECONSTRUCTION 3.5 Modern Approach

Figure 34: NeRF architecture taken from [54]

Finally, when generating new views, it is necessary to sample along ray the network and to
take the 1D integral along the ray of the colour and opacity. This is similar to standard alpha
compositing found in classical rendering in computer graphics.

The integral along each rayr (t) = o+ t � d is

C =
NX

i =1

Ti � i ci (3.4)

With the colour ci sampled along the array by forwarding the MLP network. The weights are
a measure of the quantity of light blocked earlier along the ray:

Ti =
i � 1X

j =1

(1 � � j) (3.5)

And � i is the amount of light contributed by a a segmenti along the ray

� i = 1 � exp� � i �t i (3.6)

It can be interpreted as the opacity of that segment.
In order to maximise the e�ciency of the neural rending sampling process, there is a two

pass rendering. The �rst is coarse and linear and the second is �ne and sampled non-linearly,
drawing sampling points from the weights calculated from the �rst pass. This enables to sample
more e�ciently around the object boundary.

Solal Nathan - ARPE Report 40 / 91

3 3D RECONSTRUCTION 3.5 Modern Approach

Figure 35: Images reconstructed from NeRF

3.5.2 Neural and di�erentiable rending

As seen quickly in the previous subsection, neural rendering can be leveraged e�ciently to com-
pute novel view synthesis directly from implicit representation without having to �rst compute
a intermediate representation, using for example the marching cubes algorithm [16, 98].

In the classical approach to rendering, 3D explicit representation is used. For each pixel that
needs to be rendered, a ray marching is performed and therendering equation is calculated.
More advanced techniques using for example Monte-Carlo sampling or limiting light bounces
can be used to speed up the calculation. This is purely a computer graphics approach.

The problem with this approach is that is required a transformation from an implicit repre-
sentation to an explicit representation, using most of the time the marching cubes algorithms
and then a classical rendering pipeline. None of those algorithm are di�erentiable, which means
that even by calculating the di�erence between the ground truth and your �nal results, back-
propagation through the whole pipeline is impossible.

Neural rendering is di�erentiable, which means that end-to-end backpropagation is possible.
Moreover, not requiring to use marching cubes in the middle of each novel view synthesis
signi�cantly speed up the rendering process. MonoPort is able to achieve real time 4D human
reconstruction using this technique and some other tricks on two 2080Ti [45].

Neural rendering enables a form a self supervision to the pipeline as seen in [59]. An example
result from this paper, using neural rendering, is shown in Figure36.

Solal Nathan - ARPE Report 41 / 91

3 3D RECONSTRUCTION 3.6 3D Human Reconstruction

Figure 36: Neural Rendering results based on the IDR method

There exists some unrelated work that utilise neural and di�erentiable rendering (seen in
ADL4CV: Neural Rending8) such as neural voice puppetry, or animation modi�cation (faster
than the GAN variant).

3.6 3D Human Reconstruction

This section focuses on the state of the art in 3D human reconstruction. In the past, 3D human
reconstruction has existed using sophisticated environments: a large number of calibrated and
synchronised cameras using the exact same sensor, with controlled lighting. This techniques
yield high quality results, however they are cumbersome and expensive. Unfortunately the
amount of time and money required to setup suitable environments is not always available.

The direction of research today aims to achieve similar results with signi�cantly fewer shots
and expenses, sometimes using only one frontal picture. It also aim to be more portable, behind
able to recreate 3D reconstruction of human from pre-existing datasets that were not meant for
human digitisation in the �rst place. Furthermore, it plans to tackle di�cult challenges such
as temporal coherence in 4D reconstruction from video inputs. Finally, it intents to run in real
time applications, given a single live video feed, which is not possible with former methods.

Overall, the research on the subject attempts to crate a simpler, more �exible and more
robust set of algorithm to tackle the challenging problem of 3D clothed human reconstruction.

The problem is arduous for a number reasons such as:

ˆ exceptionally thin details as hair or lace, which can hardly be represented in a mesh or
voxel based-grid due to the memory limitation;

ˆ wide variety of shape and variance between human bodies;

ˆ real time adaption to change of the model itself if a person changed clothes (i.e. takes
o� a jacket)

Pose estimation, activity analysis or real time motion capture are sibling research areas to
3D reconstruction. They all interact with one another frequently [110, 113, 29].

3.6.1 PIFu and the derivatives

Some modern methods strive to solve the 3D reconstruction of human beings and obtain im-
pressive results [35, 56, 120, 39]. However, the most impressive results come for the papers in

8A Deep Learning course based on [98] by the Dynamic Vision and Learning Group of the Technical University
of Munich. See also the 2020 Neural Rending tutorial at CVPR, based on the same paper

Solal Nathan - ARPE Report 42 / 91

3 3D RECONSTRUCTION 3.6 3D Human Reconstruction

the PIFu heritage [85, 86, 32, 45, 36]. The Project Splinter is about human digitisation with
implicit representation and covers the PIFu heritage line9.

PIFu stands for Pixel-aligned Implicit Function and is used for high-resolution clothed
human digitisation[85]. PIFu supports single view or multi-view input of a person. It is a full
pipeline to create a textured 3D mesh from 2D images. It also takes into account its uncertainty.
For instance, it will have a higher uncertainty when creating the back of a person from frontal
images only. PIFu leverage the local feature encoding to pixel align the 2D image information
to the 3D data.

The function is a plain 3D occupancy �eld:

f (X) =

(
1, if X is inside the mesh

0, otherwise
(3.7)

However, it is learnt as a probabilistic occupancy �eld.
It implicitly de�nes a surface by setting every X = (X x ; X y; X z) 2 R3 inside or outside

of the surface. It is more memory e�cient to store the implicit version of the surface in this
manner and overcomes the issue of having to create a discretisation of the 3D space.

PIFu consists of a fully convolutional image encoderg and a continuous implicit function
f which is represented by an MLP, as it is an universal approximator. Sincef is continuous,
bilinear interpolation is used to infer values at a sub-pixel level.

Let x = � (X) the 2D projection of X and Z(X) = X z the depth in the camera coordinate
space. Since we use orthogonal project we have� (x) = (X x ; X y).

Figure 37: PIFu architecture from [85]

The algorithm is trained by minimising the average mean square error:

L =
1
n

nX

i =1

jf v(FV (x i); z(X i)) � f �
v (X i)j2 (3.8)

9See more athttps://project-splinter.github.io/

Solal Nathan - ARPE Report 43 / 91

3 3D RECONSTRUCTION 3.6 3D Human Reconstruction

whereFV (x) = g(I (x)) is the image feature fromg at x = � (X) and the ground truth: f �
v .

A smart sampling strategy is used to not sample the whole 3D space and not sample only
close to the iso-surface, which would cause over�tting. A marching cubes algorithm is used to
retrieve the 3D mesh from the implicit functionf .

In order to alleviate the resolution limitation due the memory footprint of the algorithm, a
�ne and coarse approach was developed in PIFuHD [86]. Doubling the output resolution has
been achieved thanks to the �ne network. In order to keep the �ne and coarse networks aligned,
the shared feature map was used, thus maintaining the pixel-alignment property. Image-to-
image translation was also used in order to estimate front and back normals, enhancing the
�nal result.

Figure 38: PIFuHD architecture from [86]

Furthermore, real time volumetric rendering was achieved by Monoport by using a PIFuHD
backend [45]. Using neural rendering techniques instead of marching cubes and a smarter
adaptive sampling strategy enabled a real time output to be obtained.

Figure 39: Monoport architecture from [45]

Solal Nathan - ARPE Report 44 / 91

3 3D RECONSTRUCTION 3.7 Evaluation metrics

Figure 40: Monoport example results from [86]

3.7 Evaluation metrics

A large variety of metrics are used in machine learning and 3D reconstruction is no exception
to this rule [30].

Solal Nathan - ARPE Report 45 / 91

3 3D RECONSTRUCTION 3.7 Evaluation metrics

3.7.1 Accuracy metrics

In the section, a brief overview of some of the most widely used accuracy metrics in 3D recon-
struction are presented. LetX be the ground truth and X̂ be the estimated 3D reconstruction
by a given algorithm.

Mean Squared Error (MSE) : lower is better.

MSE (X̂; X) =
1

nX

X

p2 X

d(p;X̂) +
1

nX̂

X

p2 X̂

d(p; X) (3.9)

nX (resp. nX̂) is the number of sampled points ofX (resp. X̂). It can be de�ned with the
L1 or L2 norm.

Intersection over Union (IoU) : higher is better.
Also known as the Jaccard index in the mathematical litterature. IoU compares the volume of
the ground truth to the volume of the reconstructed object.

IoU(V;V̂) =
jV \ V̂ j

jV [V̂ j
=

jV \ V̂ j

jV j + jV̂ j � j V \ V̂ j
(3.10)

Peak Signal-to-Noise Ratio (PSNR) : higher is better.
PSNR is commonly used when reconstructing images, like in NVS, to estimate the quality of
the reconstruction.

PSNR = 10 � log10

�
MAX 2

i

MSE

�
(3.11)

Where MAX i is the maximum possible pixel value for an image. For 8 bits per sample
imagesMAX i = 2 8 = 255.

Mean of Cross Entropy loss (CE) : lower is better.

CE = �
1
N

NX

i =1

(pi logp̂i + (1 � pi) log(1 � p̂i)) (3.12)

Where N is the total number of points (or voxels) andpi (resp. p̂i) is the predicated (resp.
ground truth) value at the the given i th point or voxel.

Earth Mover Distance (EMS) : lower is better.
Sometimes called Wasserstein distance in the optimal transport literature. EMD is intuitively
de�ned as the minimum e�ort required to transform a pile of dirt into another one. E�ort
being de�ned here as the quantity of dirt moved multiplied by the distance by which it has
been moved.

More formally, it can be seen as the minimum of the sum of distances for each points in
one set to each point of a subset of the other, over every permutation enabling a one-to-one
correspondence between the �rst set and the second subset.

Let S be the ground truth set of points andŜ be the reconstruction.

EMD (S;Ŝ) = min
S! Ŝ

X

p2 S

jjp � � (p)jj (3.13)

Solal Nathan - ARPE Report 46 / 91

3 3D RECONSTRUCTION 3.7 Evaluation metrics

Where � (p) is the closest point ofŜ to p 2 S.
Chamfer Distance (CD) : lower is better.

Using the same notation for sets as in the EMD, the Chamfer Distance is de�ned as:

CD(S;Ŝ) =
1

NS
min
p2 S

jjp � qjj2 +
1

NŜ

min
p2 Ŝ

jjp � qjj2 (3.14)

Where NS = jSj (resp. NŜ). The CD is an approximation of the EMD and has the
advantage of being computationally faster to compute.

3.7.2 Performance criterion

ˆ Memory footprint: 3D data and Deep Learning are two subjects which require large
quantity of memory.

ˆ Degree of supervision: 2D of 3D supervision can be added to help algorithms. The less
it is required, the more robust to in-the-wild data the method is considered.

ˆ Computational budget for training: Training can be a varying length. It is considered
acceptable if the training phase is long.

ˆ Computational budget for inference: by contrast, inference time should be fast. For some
applications it is even essential to be able to do inference in real time.

Solal Nathan - ARPE Report 47 / 91

4 MASK2MESH

4 Mask2Mesh

4.1 Introduction and objectives

Mask2Mesh is a C++ library embedded in a DevEnviro plugin. It can be used as a stan-
dalone C++ library to be integrated in other projects but some works needs to be done in order
to recreate the pipeline given by DevEnviro. DevEnviro (short forDevelopment Environment
for Image Processing) is an internal tool from Fraunhofer IOSB. It enables to do quick C++
prototyping of plugins which work in combinations with one another. It is a plugin based
approach to encapsulating multiple algorithms. It is developed by Thomas Pollok and others
contributors.

Mask2Mesh takes anImage, a MaskArray and a VertexMapassociated with it and outputs
an OBJ �le containing each person in the original image as a separated �at and triangulated
mesh. They are all placed at di�erent position in the �nal output image using the data from
the vertex map.

Figure 41: Final output of the texture OBJ �le viewed in MeshLab

This �nal image is taken from an OBJ �le that have been manually cleaned due to some
errors. The information given by the Mask R-CNN and the 3D vertex map sometimes contradict
one another. This cleaning can be done automatically, however this has not been implemented,
more detail in the discussion section.

Solal Nathan - ARPE Report 48 / 91

4 MASK2MESH 4.2 Software used

Mask R-CNN Mask2Mesh

input image

MaskArray

input image Obj �� le
(+ texture �� le
+ material �� le)

3D vertex map

INPUTS OUPUTSMASK RCNN
PLUGIN

MASK2MESH
PLUGIN

parameters parameters

Figure 42: Pipeline of the DevEnviro plugins used

4.2 Software used

Mask2Mesh relies on others libraries and programs in order to function. The library part works
with only OpenCV as a dependency. The DevEnviro plugins requires DevEnviro and Qt as
new dependencies.

OpenCV (Open Source Computer Vision Library) is an open-source C/C++ library for
computer vision and machine learning [69]. More recently OpenCV also support some deep
learning applications via the DNN module in OpenCV 3.3.

QT (pronouncedcute) is a free and open-source, cross-platform toolkit software used to
create Graphical User Interfaces (GUI) [99].

CACTUS-3D is a georegistration and 3D reconstruction software on a virtual globe. It is
a tool developed internally by Thomas Pollok at Fraunhofer IOSB.

4.3 Input Data

The main algorithm from Mask2Mesh (M2M) takes 3 components as input data:

ˆ the original image;

ˆ the MaskArray;

ˆ the 3D vertexMap.

Original Image is a RGB array of varying size captured from a camera.

4.3.1 Original Image

The original image is an RGB image containing people who should be detected. Is it �rst
passed to an instance segmentation algorithm in order to retrieve the mask for each person. In
our pipeline we use Mask R-CNN as a segmentation algorithm and each mask is merged inside
a MaskArray.

Solal Nathan - ARPE Report 49 / 91

4 MASK2MESH 4.4 The algorithm

4.3.2 MaskArray

The MaskArray is a special structure which goes as follows:

struct MaskArrayEntry
{

cv::Rect bb;
cv::Mat mat;

};

It stores a rectangle corresponding to the ROI and the Mask corresponding to the instance
segmentation of the image (in�ated back to original size) in the coordinate system of the ROI.
This structure stores a couple (ROI, Mask) for every entry detected as a person by the Mask
R-CNN plugin.

4.3.3 3D Vertex Map

The 3D Vertex Map is matrix of the same dimension as the original image, but instead of
containing RGB information, it contains XYZcoordinates for every point of the image. The
coordinates are given relative the camera coordinate system. They are obtained via a 3rd party
(CACTUS-3D) and not calculated by the M2M plugin as they are given as input.

4.4 The algorithm

The algorithm is divided up into multiple functions, which enables a great modularity and
simplify the debugging. It also makes the �nal shape of the algorithm easier to understand. It
can be summarised as follows:

Solal Nathan - ARPE Report 50 / 91

4 MASK2MESH 4.5 Triangulation

Algorithm 4: Mask2Mesh
input : MaskArray, Original image
output: OBJ �le
WRITE true
foreach (ROI, mask) in MaskArray do

// sample points from the border and the regular grid
border sample_border(mask)
grid sample_grid(mask)
// create subdivision and insert all the points
subdiv create_subdiv(); subdiv.insert(border); subdiv.insert(grid)
if WRITE is true then

// write verticies to obj string
foreach point p in (border, grid) do

// change of coordinate from relative to absolute values
p p + roi
// (x; y; z) coordinates of p in the vertex map
data_p vertex_map(p)
// Write to string
obj.append(format_v(data_p))
obj.append(format_vt(p, image.size))

end
end
// Perform Delaunay triangulation
triangle_list = subdiv.get_triangles()
// Delete all triangles the centroid of which are not inside the mask
triangle_list = delete_unwanted_triangles(triangle_list, mask)
if WRITE is true then

// Locate and write triangles to OBJ file
locate_and_write_triangles()
// Write OBJ, texture and material files either to disk or to

memory
write_everything()

end
end

4.5 Triangulation

A triangulation, or point set triangulation, is a set of triangles (made of edges and vertices)
connecting every single point of a set of pointP10.

10Sometimes the de�nition consider a triangulation which only uses a subset aP to a a valid triangulation
over P, but we will not consider this case at it is not relevant to our problem.

Solal Nathan - ARPE Report 51 / 91

4 MASK2MESH 4.5 Triangulation

Figure 43: Di�erent triangulations for a given set a points

4.5.1 The Delaunay triangulation

The Delaunay triangulation is often used to generate meshes from a given set a points, for
example in �nite element methods or �nite volume methods. It is usually applied in 2D but
generalises to higher dimensionsd � 2.

The Delaunay property ensure that the no point inP is inside the circumcircle of a triangle
of the Delaunay triangulation DT (P). This maximises the minimum angle for the triangles
and tends to avoid silver triangles11.

In the case of a two triangles sharing a common edge, �ipping can be performed to respect
the Delaunay property. The property is equivalent to stating that the sum of the angles� and
� are less than180 deg.

A

B

C

D

��

��

(a) � + � � 180 deg

A

B

C

D

(b) Does not respect the De-
launay property

A

B

C

D

(c) Flipping

It can also be noted that the Delaunay triangulation is the geometric dual of the Voronoi
diagram.

11A triangle with one or two very acute angles, creating a very thin triangle unsuitable for some computational
processes.

Solal Nathan - ARPE Report 52 / 91

4 MASK2MESH 4.5 Triangulation

(a) Delaunay triangulation
(b) Geometric dual: Voronoi
diagram

There a number of other possible triangulations which are not the Delaunay triangulation.
For instance, is is possbible to consider minimum-weight triangulation which consist of �nding
the triangulation for a set of points which as the sum of its edges. It is sometimes referred as
an optimal triangulation. It is NP-hard and thus much more di�cult to compute. There is also
the Greedy Triangulation which uses a greedy scheme. Moreover, a variant of the Delaunay
triangulation which is called constrained Delaunay Triangulation, consist of constructing a
Delaunay triangulation with an already given set of edges alongside the initial set of points.
It will not always result in a Delaunay triangulation as the set of original edges can contain
triangles which does not respect the Delaunay property.

4.5.2 Algorithms

Most of the algorithms which compute the Delaunay Triangulation rely on a fast method to
check if a quadangle respects the Delaunay property. Which means �nding if a fourth point
lays inside or outside of the circumcirle of the triangle create by the �rst three points.

Given four points A; B; C; D given in a counterclockwise order, one can evaluate the deter-
minant:

�
�
�
�
�
�
�
�

Ax Ay A2
x + A2

y 1
Bx By B 2

x + B 2
y 1

Cx Cy C2
x + C2

y 1
Dx Dy D 2

x + D 2
y 1

�
�
�
�
�
�
�
�

=

�
�
�
�
�
�

Ax � Dx Ay � Dy (A2
x � D 2

x) + (A2
y � D 2

y)
Bx � Dx By � Dy (B 2

x � D 2
x) + (B 2

y � D 2
y)

Cx � Dx Cy � Dy (C2
x � D 2

x) + (C2
y � D 2

y)

�
�
�
�
�
�

=

�
�
�
�
�
�

Ax � Dx Ay � Dy (Ax � Dx)2 + (Ay � Dy)2

Bx � Dx By � Dy (Bx � Dx)2 + (By � Dy)2

Cx � Dx Cy � Dy (Cx � Dx)2 + (Cy � Dy)2

�
�
�
�
�
�

> 0 (4.1)

This determinant will only be positive if and only if D lies inside the circumcircle de�ned by
4 ABC . The fastest algorithm known today to compute the Delaunay Triangulation is based
on the divide and conquer scheme. It splits the set of points in half recursively, then calculate

Solal Nathan - ARPE Report 53 / 91

4 MASK2MESH 4.5 Triangulation

the DT for the split sets of points and �nally merges them. It is sometimes refereed as the
Dwyer algorithm, as Dwyer gave the latest improvement to the divide and conquer-based DT
algorithm. It can be shown that any algorithm running in O(n logn) time and O(n) for the
merging part is asymptotically optimal.

There is a case scenario where all the points are collinear, the de�nition of the triangle itself
is degenerated in this case and no Delaunay triangulation exists.

The full pseudo-code implementation of the Delaunay Triangulation algorithm is outside
the scope of this paper. A well detailed explanation and C++ implementation can be found at
https://cp-algorithms.com/geometry/delaunay.html . For the rest of the paper, implementation
will not be considered an issue as the one provided by the OpenCV library will be used.

4.5.3 Implementation of the triangulation

The Delaunay triangulation is used in order to perform the triangulation. The set of point given
as an input to the triangulation algorithm is split into two parts. The �rst part is the border
of the mask. Given the mask, a border can be computed, then a march through the border
and uniform sampling along the arc-length of the border is performed. The parameter which
controls the sampling rate is called themaximum border arc-lengthand defaults to10:0 pixel-
arc-length. The second part of the set of points is the inner grid which is sampled uniformly
in a grid pattern. The sample rate is called theinner grid gap parameter and defaults to10
pixels.

Solal Nathan - ARPE Report 54 / 91

4 MASK2MESH 4.5 Triangulation

Figure 46: Closeup of a triangulation

4.5.4 Removing unwanted triangles

In order to remove an unwanted triangle, we have to �nd a way to discriminate between triangle
which are inside and outside the mask. Taking a point in the middle should be enough, but
any point on the edge might not work. The centroid is desirable choice for the threshold at
which the triangle is considered wanted or not due to many of its good properties.

Solal Nathan - ARPE Report 55 / 91

4 MASK2MESH 4.6 Output Data

G

A

B

C

Figure 47: Unwanted triangle which needs to be removed

On the Figure 47, the mask is depicted in pale blue and the unwanted triangle in red. The
centroid of the triangle 4 ABC is G. Let A = (X A ; YA) and so on. The de�nition of the
centroid is then

G =
�

1
3

(X A + X B + X C);
1
3

(YA + YB + YC)
�

In general, for a set of pointsx1; x2; : : : ; xm in Rn , the centroid is de�ned as:

G =
1
m

mX

i =1

x i (4.2)

The centroid of a convex object always lies in the object itself. A triangle being a convex
object, the centroid is always within the triangle itself. Moreover, the centroid of a triangle is
also the intersection of the medians, proving once more that it lies within the triangle.

They are multiple properties that makes the centroid a good decision point for us wanting
to keep or discard a triangle. The centroid always lies within the triangle. It correspond to the
centre of mass, which means that it divide the area of the triangle in equal parts. It is not on
the edge12. It is very fast and easy to calculate, a simple arithmetic mean, which is not the
case for every notable point in a triangle.

4.6 Output Data

The output data can be either an OBJ-like object which is stored in memory or a real OBJ �le
which is saved to the disk alongside with the texture and the material �le.

Structure of the binary OBJ:

struct BinaryObj
{

std::vector<cv::Vec3f> verticies;
std::vector<cv::Vec2f> uv;
std::vector<cv::Vec3i> triangles;

};
12expect for ill-formed triangles which would not work with the Delaunay triangulation in the �rst place

anyway.

Solal Nathan - ARPE Report 56 / 91

4 MASK2MESH 4.7 Performances

The advantage of storing the data as a binary OBJ-�le object in memory is that it is much
more space and time e�cient. It does not need to be written and read from �le and numeric
values does not need to be converted to ASCII characters. The disadvantage is portability,
in order to be able to pass this data to another plugin in the pipeline, this plugin need to
implement the same non-standard data-structure. Passing data in memory from one program
to another is not always possible, especially if the destination program is closed sourced.

4.7 Performances

Once the program is compiled in release mode and the debug values are set to the lowest to
print the least amount possible to standard output, the performance of the program can be
evaluated:

ˆ 700 ms to read the 3D vertex map

ˆ 4 ms for triangulation

ˆ 7 ms for creating the string obj (if it has to be exported to �le)

The C++ program is highly e�cient at the given task and could envisioned in a real-time
pipeline if the input data could be passed directly in memory without having to read it from
�le and to write to �le the output. The bottleneck is located in the input/output section (IO)
and the instance segmentation that need to be run beforehand for every image (200-300 ms).

This matter is further discussed in the Section7: Discussion at the end of this report.

4.8 Compression Rate

The compression rate is de�ned as the size the vertex compared to the size of the output �le,
ignoring the negligible size of the image and the material �le. The input image is a1280x720
RGB image resulting in the detection of 20 person by Mask R-CNN. The default values for the
Mask2Mesh algorithm are always used during this experiment.

The ASCII compression rate is de�ned as the ratio of the size of theYAML�le to the obj
�le. On this example it is approximately 11, which means that the output OBJ is8 % the size
of the original YAML�le.

The binary compression rate is de�ned as the ratio of the size in binary format, not storing
the useless data present in the OBJ. On this example it is approximately63, which means that
the binary size of the obj �le is 1:6 % of the binary size of the 3D vertex map.

This binary compression rate could go up to122 if unsigned short int were used, but
it would be mean to verify if the number of triangles is lower than65 535and it would also
require to create a new data structure instead of using the one given by OpenCV.

This test is not exhaustive, yet the image chosen is challenging enough to be considered a
worst case scenario and be representative of a conservative estimate for the compression rate
achieved by the Mask2Mesh algorithm.

4.9 Later modi�cation

Some later modi�cation have been requested and added to the software. These include bug
�xes, UI clari�cation and the addition of new features. The project being initially a Proof of

Solal Nathan - ARPE Report 57 / 91

4 MASK2MESH 4.9 Later modi�cation

Concept created a simple, undocumented code base. Even if I have made an e�ort to keep the
code as clean as possible, time accumulated, creating a code base less and less maintainable
by the time. If I were to rewrite this program from scratch I would do things di�erently. The
base structure is good, with the core plugin separated from the backend library. The backend
library should be split into smaller �le and be better documented, to enable the core plugin to
be lighter and simpler to understand, modify and maintain.

The �rst modi�cation that was requested is the ability to input the 3D vertex map using
another plugin, with simple UI to be able to select this option. Then, the second modi�cation
requests was the ability to mesh the background. This created the need for a simpler meshing
procedure than the one used in the initial meshing process for the persons.

Meshing the background can lead to some artefacts due the fact that the 3D vertex map can
be of poor quality. This is a concept calledgarbage in, garbage out(GIGO) in computer science
which states that if you feed a computer program with poor or incorrect data, or just data that
it was not meant to treat, it will output poor result. The desing of the original algorithm did
not took into account the possibility of having such data. For example, if the 3D vertex map is
created using di�erent settings for the person detection and instance segmentation, it can lead
to having a di�erent mask for them. It will then lead to some background triangles being part
of the person, or vice-versa, adding unwanted triangles between the person and the background.
Apart from this problem, the meshing does not add a signi�cant overhead to the program and
can be neglected in our computational bottleneck analysis.

Another problem that appeared due to the background meshing and the incorrect data
input is the adding of the camera origin inside the background mesh.

This problem is again due the to the 3D vertex map not being of the quality expected by
the algorithm. When data is missing, due to incorrect sizing or some other factor, some data
can be empty. In this case it will represented with zeroes inside the 3D vertex map array. The
point (0; 0; 0) correspond to the origin, where the camera is located, therefore it cannot be part
of the mesh. It was to be removed from the �nal mesh.

In order to remove those points, the mesh is iterated over. For every triangle, each point
depth coordinate is checked in absolute value against a threshold (0:1 by default) to remove
the unwanted triangles. This simple �x works perfectly to clean up the data. A simpler way
to remove this information would be to do a processing of the data, but the source cannot be
controlled by this program, making this simple solution unfeasible in our case.

Solal Nathan - ARPE Report 58 / 91

5 NERF TAXONOMY

5 NeRF taxonomy

5.1 Introduction

During this internship, one of the original work I have work on is a broad understanding
of the NeRF ecosystem and its tree view. After the release of the original NeRF paper, a
rapid explosion of follow up paper began to appear. It was very in�uential in the �eld of 3D
reconstruction and novel view synthesis. In this section, I try to give a taxonomy of some of
the most important follow up papers, their methods, they strengths and weaknesses.

5.2 Theory

The fundamentals necessary in order to achieve the revolutionary behind NeRF are varied.
Firstly, there is the implicit function representation, which has existed for a long time in the
domain of computer vision, but only started to grow in traction with the advent of neural
network based implicit rendering. Secondly, there is the classical ray marching method needed
for query the network and summing its results. This method is a classic in computer graphics
and is today well understood. Thirdly, recently the neural rendering enabled to have a fully
di�erentiable pipeline in order to be able to do end-to-end training. Finally, and more impor-
tantly, there the attention mechanism embodied in the feature mapping found before the MLP
in the NeRF-based methods.

The most important work to cite in this area are SIREN [91] and the Fourier Features paper
[96].

SIREN developed an interesting approach to the feature embedding and the implicit func-
tion representation problem. The key idea behind SIREN is to sinus function as the activation
function inside a neural network-based implicit representation and to over�t a network to rep-
resent the given scene. The represented data can be varied, from images to 3D data. Sinusoidal
function are not a common activation function in deep learning. Using periodic activation
functions enable the network to capture �ne details which a standard architecture would not
be able to. SIREN have varied applications such as retrieving an image from its �rst or second
order derivative, solving boundary equations and inverse problems. SIREN can be seen as a
generalisation of the Fourier Feature work realised earlier.

Figure 48: 3D reconstruction using a MLP with a ReLU non-linearity as a baseline and com-
paring it to the periodic (sine) activation representation (SIREN)

Solal Nathan - ARPE Report 59 / 91

5 NERF TAXONOMY 5.3 Generalised methods

5.3 Generalised methods

Generalisation of the NeRF method tends to free themselves from certain constraints set by
the orignal framework of NeRF. There are by consequent more general and capable of doing
more than their counterpart, at the price of some cost most of the time.

ˆ GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis [89]

ˆ GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering
[102]

ˆ pixelNeRF: Neural Radiance Fields from One or Few Images [115]

ˆ Learned Initializations for Optimizing Coordinate-Based Neural Representations [97]

ˆ pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthe-
sis [9]

ˆ Portrait Neural Radiance Fields from a Single Image [24]

ˆ ShaRF: Shape-conditioned Radiance Fields from a Single View [77]

ˆ PVA: Pixel-aligned Volumetric Avatars [72]

ˆ IBRNet: Learning Multi-View Image-Based Rendering [106]

ˆ CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields [58]

ˆ NeRF-VAE: A Geometry Aware 3D Scene Generative Model [41]

ˆ Unconstrained Scene Generation with Locally Conditioned Radiance Fields [18]

5.4 Specialised methods

On the other hand, these methods are more specialised as there name implies. They have more
constraints that the original NeRF method making them excel in certain sub-domains at the
cost of some loss of generality. This also enables to have greater control over certain part of
the process, making it easier to understand. For example in the UNISURF paper it enables a
formal proof of convergence towards a surface which would not be possible with the original
NeRF (as it does not always converge to a surface, for example when reconstructing smoke
there is not even a surface to reconstruct).

ˆ UNISURF [61]

ˆ NeRFACE [23]

Solal Nathan - ARPE Report 60 / 91

5 NERF TAXONOMY 5.5 Faster inference

5.5 Faster inference

The goal of these papers is to enable a faster inference for NeRF-like representations. The
original NeRF implementation take around 30 seconds to render an800� 800 image. A few
other implementations have been done afterwards that can speed up to 30% this process.
However, it is far from being a real-time rendering and many techniques can be used to achieve
faster inference times. For humans, the perception of motion starts around 15 FPS (slow
motion), most videos are at 30 FPS (TV broadcast, movies, internet videos), some monitors
are capable of displaying even higher FPS (48, 60, 120, 144, 240) and are commonly used in
the entertainment industry (video games and �lm).

ˆ Jax NeRF [7]

ˆ FastNeRF [25]

ˆ SNeRG [33]

ˆ Neural Sparse Voxel Fields [49]

ˆ AutoInt [48]

ˆ DeRF [74]

ˆ KiloNeRF [76]

ˆ PlenOctrees [116]

ˆ DONeRF [57]

5.6 4D reconstruction

4D reconstruction is the ability to reconstruct 3D information from images with the additional
temporal component. With the deformable approach it range from applying a 3D reconstruction
algorithm at each time step, giving essentially not temporal coherence, to �tting a rigged
skeleton and doing pose estimation to retrieved its motion. The spatio-temporal approach tend
to �rst learn the model and then learn a deformation map at each subsequent image, making
the time a seprable variable from the reconstruction.

Both approaches are similar, the spatio-temporal one di�er only in the non-deformable
nature of the model. Depending on the situation it can be an advantage. For example, when
reconstructing a scene with a car, which can be approximated as a static object unless it makes
collision, it is important to know the relative motion of the object, but keeping a structural
coherence of the object is also important.

5.6.1 Deformable

ˆ Deformable Neural Radiance Fields (D-NeRF) [63]

ˆ Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction [23]

ˆ NR-NeRF [101]

Solal Nathan - ARPE Report 61 / 91

5 NERF TAXONOMY 5.7 Pose estimation

ˆ PVA [72]

ˆ Neural Articulated Radiance Field [60]

5.6.2 Spatio-temporal

ˆ Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [47]

ˆ Space-time Neural Irradiance Fields [109]

ˆ Neural Radiance Flow for 4D [19]

ˆ Neural Body [65]

ˆ Neural 3D Video Synthesis [46]

5.7 Pose estimation

The camera pose estimation is generally performed beforehand and fed to the network as an
input data at training time. However, these papers decided to not incorporate this data and to
learn it from scratch. It is sometimes able to succeed with fewer data or in challenging situation
without using well-known algorithm as MVS.

ˆ MVSNeRF [11]

ˆ NeRF - - [107]

ˆ A-NeRF [92]

ˆ iNERF [114]

ˆ iMAP: Implicit Mapping and Positioning in Real-Time [imap]

5.8 Datasets

Some of the most commonly used datasets to train and to work with NeRF, and more generally
with 3D data.

ˆ ShapeNet [10]

ˆ Human 3.6M [37]

ˆ SIZER [100]

ˆ 3D People [70]

ˆ Dyna [68]

ˆ DFAUST [4]

ˆ BUFF [118]

Solal Nathan - ARPE Report 62 / 91

5 NERF TAXONOMY 5.9 Review papers

ˆ DeepFashion [121]

ˆ KITTI [26]

ˆ Pix3D [93]

5.9 Review papers

ˆ NeRF and Beyond [16]

ˆ Awesome NeRF

ˆ NeRF explosion

5.10 Fewer input images

ˆ pixelNeRF [115]

ˆ DietNeRF [38]

5.11 Implementations details

ˆ Original Implementation (Tensor�ow)

ˆ Pytorch implementation (faster)

ˆ Pytorch3D implementation (faster, and integrate well with Pytorch3D features, well writ-
ten)

ˆ JaxNeRF implementation

Solal Nathan - ARPE Report 63 / 91

6 NERF APPLICATION

6 NeRF application

6.1 Introduction and goal

The goal of this section is to expose the work I have been working on around understand NeRF,
the follow up papers, the code and some applied experiment to put my knowledge to the test
and implement new ideas or re-implement existing ones. It was also made in order to contribute
to the scienti�c reproduction e�ort in the case of the re-implement or the correction of existing
methods.

6.2 NeRF implementation

There exists di�erent implementation of the original NeRF method. Firstly, the one published
by the authors themselves, then a slightly faster implementation in PyTorch instead of Tensor-
�ow. A third implementation, created as an example for the PyTorch3D toolkit was written
by the FAIR 13. The quality of the code of this last version is superior to the former ones. The
code is cleaner, lighter and more maintainable. My �rst work was to use, understand and to
re-implement it fro, scratch. I also run the same experiments than the one presented by the
authors of this implementation in order to compare and reproduce their results successfully.

Figure 49: Reconstruction of 3D model of a cow using a toy version of NeRF. Based on a code
provided by the FAIR [73].

13There exists many other implementation like the one using Google Jax, but the idea in this section is not
to give an exhaustive list of all existing implementations.

Solal Nathan - ARPE Report 64 / 91

6 NERF APPLICATION 6.2 NeRF implementation

A short video summarising the training process can be found on my personal page at
https://perso.crans.org/otthorn/ARPE/set_2/movie.webm .

Figure 50: Final reconstruction of the cow after20 000epochs

FAIR is one of Facebook's research lab and they have a working toy example of NeRF
inside of PyTorch3D since version0.4.0 . Using their code and explications it was possible to
replicate NeRF structure and to run it myself.

In order to better understand the theory behind NeRF I also wanted to run experiments
based on the core theory behind it. After NeRF, SIREN [91] came out as a generalisation
of the Fourrier Feature method. I tried writing my own SIREN-based NeRF implementation
before realising that this path had already been explored by others, especially in the pi-GAN
paper [9] and their SIREN-head which replace the attention mechanism in the Fourier feature
implementation.

Solal Nathan - ARPE Report 65 / 91

6 NERF APPLICATION 6.3 3D reconstruction experiments

Figure 51: Uncurated generated faces, corresponding to the �rst 30 random seeds. Image taken
from the pi-gan paper [9].

6.3 3D reconstruction experiments

NeRF is a general method and as a side e�ect, it is able to reconstruct more than Novel View
Synthesis. Using the output of the MLP, it is possible to acquire the depth map, mask or even
a meshed 3D reconstructed object as we have seen above with the cow example where we were
able to training jointly to acquire the NVS and the mask.

The goal of this study is to able to reconstruct a 3D object and obtain the underlying 3D
structure of it in a mesh form. This is not the original goal of NeRF-based methods, however
they should deliver results on par with the state of the art for this task.

The subject of the study is a car. It is a black Lupo manufactured by Volkswagen. The VID
department was working on a prototype of 3D scanning using di�erent methods and wanted to
evaluated the pertinence of NeRF-based methods for this task. It is unconventional to use such
methods for precision, but having a baseline experiment to compare to enable to make better
decision making to further develop future research techniques.

We have chosen a black car, with a very shiny and re�ective surface. The car is far from
respecting the hypothesis of perfect Lambertian texture, making the reconstruction much more
di�cult. If the NeRF-based reconstruction technique manage to reconstruct this car it should
be a su�cient enough proof of concept for any car.

Classical methods with SfM and MVS using Colmap were also ran in parallel in order to
have a comparison. A spare reconstruction is necessary14 in order to have the camera pose
estimation to feed to NeRF. Moreover a dense reconstruction was also conducted.

6.4 Creation of the dataset

The �rst step was to build the dataset from scratch. Two datasets were created from scratch.
They are very similar in nature, only the camera changes between the two. The subject of the
experiment is a black Volkswagen Lupo and during the creation of the dataset it was parked

14Some MVS-based NeRF methods do not require pre-processing using a sparse reconstruction, butthis
experiment will not focus on those methods.

Solal Nathan - ARPE Report 66 / 91

6 NERF APPLICATION 6.4 Creation of the dataset

in the courtyard at Fraunhofer IOSB. It was created in June 2021, during a sunny afternoon,
giving good lighting conditions. However the sun and the lighting also create more re�ections.

The dataset was created following the standard instructions used in many reconstructions
projects. It followed the guidelines given by many authors of NeRF-based paper, including the
original one and also more classic methods, following COLMAP recommendations.

The dataset is meant to be suitable for both modern and classical techniques, even if the low
number of images will certainly yield poor result in case of dense reconstruction using classical
methods like COLMAP and Delaunay or Poisson meshing, as we will see later.

The dataset was created by taking 5 photos at di�erent heights and slightly di�erent angles,
taking a step on the side, then taking 5 more photos. The 5 heights are approximately at ground
level, knee level, torso level, eye level and �nally armed raised above the head-level. Each step
taken create a full 360 degrees rotation around the car. The total number of pictures captures
in the two datasets are approximately 150 pictures each.

The �rst dataset was created using a Smartphone (Google Pixel 4 XL) and the images have
the following properties:

ˆ resolution 4032 x 3024 (12.2 MP) � 3.2 MB

ˆ aperture: F/1.73 focal length: 4.38mmexposure:1/2143s ISO: 58

The second dataset was created using a DSLR camera (NIKON Z 6) and the images have
the following properties:

ˆ resolution: 4528 x 3016 pixels (13.7 MP) � 9.2 MB

ˆ aperture: f/4.0 focal length: 24mmexposure:1/250s ISO: 320

Auto settings zerz used on both cameras during the creation of the dataset, which means
that the above settings are only indicative and can vary from one picture to the other. The
resolution is always �xed.

Figure 52: Example taken from the Lupo Datatset

Solal Nathan - ARPE Report 67 / 91

6 NERF APPLICATION 6.5 Premilinary results

All of this information can found inside the EXIF data of the images which has not been
remove for this purpose. The only pre-processing received by the dataset is resizing to 1280x960
all the images. The reduced size of the images makes the learning faster and the resolution is
choose to be divisible by 24. At most 4 graphics cards will be used at once during training
and testing, which means that our number of pixel in the image needs to be divisible by
4! = 4 � 3 � 2 � 1 = 24. This is necessary for the distributed data handling in PyTorch used by
NeRF++.

The dataset created will be sometime be refereed as the Lupo Datatset.

6.5 Premilinary results

In order to acquire the camera pose estimation we use COLMAP and perform a sparse recon-
struction.

Figure 53: Sparse reconstruction using COLMAP

Once the sparse reconstruction is done, the heavy lifting of the camera pose estimation
has been performed by COLMAP and we only need to convert the obtained data in a format
readable by NeRF++ by the mean of a little script. We can visualise the result to make sure
that not error was made during the conversion.

Solal Nathan - ARPE Report 68 / 91

6 NERF APPLICATION 6.5 Premilinary results

Figure 54: Camera pose estimation, with poses converted into NeRF++ format

Finally, if we want to have a way to compare our �nal result we need to make a dense
reconstruction using COLMAP. This is a state of the art technique that uses non deep-learning
method and perform well when giving very large quantity of data.

Figure 55: Dense Delaunay reconstruction using COLMAP

As COLMAP tries to recreate the entire scene from only 150 images, which is very little

Solal Nathan - ARPE Report 69 / 91

6 NERF APPLICATION 6.6 Experimentation

for such a reconstruction using non deep learning-based methods, the result is of very low
quality. Then very non-Lambertian property of the surface of the car must also add an extra
challenged to the already di�cult task for COLMAP, even if it managed to perform the sparse
reconstruction given the same di�culty. There is no real surface reconstruction, only chunks
resulting the Delaunay algorithm. The results could be cleaned further by automatic algorithms
inside COLMAP or MeshLab, but this is outside the scope of this example and would not
retrieve any of the missing information anyway.

6.6 Experimentation

Only the �rst dataset was used in the experimentation. The added quality from the DSLR
should not make a di�erence in the learning process, especially knowing that the images are
resized to a lower resolution before the learning process.

Two experiments were performed in order to maximise the PSNR of the resulting NVS.

6.6.1 The choice of the method

There exists di�erent methods that could have been chosen for this task. First lets examine
the original NeRF method. It is promising, however it does not handle open scenes well. As
we did not have a tall ladder during the creation of the data, most of our pictures are taken on
ground level, meaning that a large proportion of background is visible on most of the pictures.
This gives varying results using the original NeRF technique, which can be good even if the
algorithm is not design for such tasks. On the other hand NeRF++ has corrected this issue
by adding a second MLP which learns the background separately from the foreground. It also
helps to separate them during the 3D reconstruction later and given the projective nature of
the background MLP it will naturally take less memory for farther data, for which we have less
information anyway due to the camera limited resolution.

The parametrisation for the input of the second MLP is as follows:

(x; y; z;1=r)

with r (radius) the distance of the point from the camera.

Figure 56: inverted sphere parametrisation for the outside NeRF network. Image taken from
the NeRF++ paper [119]

Solal Nathan - ARPE Report 70 / 91

6 NERF APPLICATION 6.6 Experimentation

There is also Neural Sparse Voxel Fields (NSVF) which could be used for this task. Is has a
smart and compact representation of volumes using Octrees. A marching cube algorithm has to
be run in order to smooth out the blockiness of the output. However this step is also necessary
in order to extract the mesh from a classical neural representation is the case of other networks.

Finally, I considered the recent UNISURF paper, which presents a technique that could be
interesting. It is a specialisation of NeRF meant for surface reconstruction, which is exactly
what we are looking for. Given this simpli�cation, the authors were even able to give a proof
of convergence for there algorithm, which is rare in such complex deep learning base algorithm.
Unfortunately, this restriction also means that the technique is not able to reconstruct trans-
parent or semi-transparent surface such as the glass panels found in the car. Moreover, the code
source had not been released at the time of making this experiment, which would mean more
work to re-implement it and make sure that this implementation was correct. Time constraints
would not allow for such a stretch, so the idea had to be abandoned.

The original repository hosting the source code is available at:https://github.com/kai-46/
nerfplusplusHowever, this repository has some issues and missing script. My work to �x it is
available here:https://gitea.auro.re/otthorn/nerf_plus_plus

6.6.2 First experiment

The �rst training was performed on a single 2060 which signi�cantly limited the possibility in
term of memory (VRAM). The NVIDIA GTX 2060 has 6 GiB of VRAM.

The con�guration used for the training was:

INPUT
datadir = ./data
scene = lupo
expname = lupo
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1

TRAINING
N_iters = 500001
N_rand = 1024
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 50000000

CASCADE
cascade_level = 2
cascade_samples = 64,128

TESTING
#chunk_size = 8192

Solal Nathan - ARPE Report 71 / 91

6 NERF APPLICATION 6.6 Experimentation

RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
use_viewdirs = True

CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_weights = 5000

The total training time was: 50h. The resulting PSNR was: 20 dB

Figure 57: Global view of the tensorboard training with the NVS, the depth map and the loss
and PSNR curves

Solal Nathan - ARPE Report 72 / 91

6 NERF APPLICATION 6.6 Experimentation

Figure 58: Example of a low PSNR image obtained after500 000iteration

6.6.3 Second experiment

The second training was performed on a cluster. The node used has 3 TITAN X (12G of VRAM
each) and one Tesla P100 (16G of VRAM). The total amount of memory and number of CUDA
cores being higher, the training was faster and we were able to accommodate for more sample
per image and a higher batch size.

The con�guration used for the training was:

INPUT
datadir = ./data/
scene = lupo
expname = lupo
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1

TRAINING
N_iters = 250001
N_rand = 1024
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 50000000

CASCADE
cascade_level = 2
cascade_samples = 64,128

Solal Nathan - ARPE Report 73 / 91

6 NERF APPLICATION 6.7 Voxelisation and meshing

TESTING
chunk_size = 8192

RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
use_viewdirs = True

CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_weights = 5000

The total training time was: 38h. The resulting PSNR was: 21-23 dB
The higher number of ray sample by image made the training learn faster in the beginning,

but the experiment was stop at only 250k iteration following the guidelines from the authors.
This yielded better results than the �rst experiment, but still low quality results overall, espe-
cially on the validation dataset. An even higher number of sample per image would be possible
given the amount of VRAM available15 and the training would probably gained in PSNR by
running for more iterations.

6.7 Voxelisation and meshing

The voxelisation and meshing process was performed by querying the MLP foreground network
on a 256� 256� 256points grid spanning on a2 � 2 � 2 cube. This size of cube is necessary
to �t the sphere of radius 1.0. This size is the normalised size of the scene and thus contain all
the foreground information. Since we are only interested in reconstructing the car and not its
surroundings it is not necessary for us to also query the background network.

It is then possible to apply the marching cube algorithm in order to retrieve the mesh from
the queried network.

6.8 Conclusion

The results are underwhelming. We did not managed to achieve the photo-realism that we
should have obtained. The results are blurry as the low PSNR attests and the inference on the
validation set proves the low generalisation obtained at the stopping point.

In my opinion it would be necessary to plot the validation PSNR / loss in parallel during
the training. It is a technique usually used for early stopping, but since we are over�tting out
data this is not the risk we would like to avoid. This is always the possibility of over�tting
to the speci�c images of the training set, but this would have a much higher complexity. The
structure of NeRF have a natural regularisation against this bias and it does not seem to emerge
in the training. It has been reported as a theoretical problem, but not a practical one, by the
research community.

15seehttps://github.com/Kai-46/nerfplusplus/issues/30

Solal Nathan - ARPE Report 74 / 91

6 NERF APPLICATION 6.8 Conclusion

Moreover, the data that was computed on the second experiment was lost. After the last
day of my internship I was still working on the project but my Fraunhofer account go closed and
I could not extract the data from it that had run the day before. Even if I was still uno�cially
working on the project and by giving my consent to the admin to extract my personal data
from my home on the server they said they were unable to legally obtain it. Thus I lost the
data associated with a signi�cant part of the result and I lack a powerful enough computer to
be able to run it at all by lack of RAM and VRAM. The algorithm has a �xed minimum space
cost that cannot be shrunk at the cost of a time lost. Even if it was the case, running 30+
hours on a cluster would translate to hundreds of hours on a computer available to me.

Solal Nathan - ARPE Report 75 / 91

7 DISCUSSION AND FUTURE WORKS

7 Discussion and future works

7.1 Mask2Mesh

Imperfection of the Mesh
The mesh generation is imperfect, especially on the border. In some cases, the Delaunay
property of the triangulation is lost. A �ner setting for border_arc_length parameter could
solve this issue, but will require a longer computation.

Figure 59: Closeup the border of mesh generated with Mask2Mesh

Background�Foreground separation
It would be possible, given the depth information to separate the foreground from the back-
ground using only the Z axis. Otsu's method on a Z axis histogram would be suitable for this
task. Otsu's method minimise the inter-class variance, or equivalently, maximise the variance
between the classes. It could be used to divide the �nal data into sizeable and sensible chunks.
A simple set of two classes to distinguish the foreground from the background. Or a more
complex N + 1 classes, withN being the number of detections, for a speci�c class attributed
to every person and an extra class for the background. Another approach would be to use a
unsupervised learning method and solve for clustering. A simple k-nearest neighbour (KNN)
could be su�cient. The (x; y)�plane is already given by the camera plane and is by de�nition
orthogonal to our z�axis.

Solal Nathan - ARPE Report 76 / 91

7 DISCUSSION AND FUTURE WORKS 7.1 Mask2Mesh

Figure 60: Mask R-CNN failing to �nd a contour on a simple example

The background�foreground separation problem could be eliminated upstream by using a
more accurate instance segmentation algorithm. The Mask R-CNN can be seen failing to detect
a clean contour on simple example like in Figure60.

Optionally meshing the background
Create the possibility to also mesh the background if possible.

Optimisation for real-time applications
In some application, real time performance is crucial. It is not the case for our application,
yet the optimisation exercise is always useful. The vast majority of the bottleneck is due to
IO, reading to and from the volatile memory or in worst cases to the disk. Writing to a bu�er
that has to be prompted to the standard output, i.e. on screen for debugging purposes can
also be a massive overhead. This last point is hopefully not an issue in production where
logs can be dumped on disk directly. The triangulation and meshing algorithm is already
su�ciently fast for real time (� 4 msif the algorithm does not have to write or read anything)
for 20 detections in a single image. Reducing the IO to a bare minimum is essential to obtain
maximum performance. The other bottleneck for this program is not the program itself, but
the instance segmentation algorithm upstream. Inference through large neural networks can be
computationally intensive and optimising further this plugin without also optimising further
up would lead to a bottleneck.

Solal Nathan - ARPE Report 77 / 91

7 DISCUSSION AND FUTURE WORKS 7.2 NeRF taxonomy

7.2 NeRF taxonomy

The search for an exhaustive and comprehensive view of a �eld is an in�nite task. Yet, there
is a lack of good review papers in the sub-�eld around NeRF-based methods. I had hoped
to have the time to write one myself and I have some work still hidden that could lead to a
preprint on arXiv, however it is far from �nished. Along my ideas for this project I had a graph
visualisation of the many papers spanning from NeRF, with links for papers citing each other.
This visualisation is interesting but still arduous to read in the actual form. Yet I have hope it
could give some insight in the �eld.

7.3 NeRF application

There is many things that could have been done di�erently in order to make this project work
properly. More time and investigate many di�erent con�guration could have lead to more
promising results. Even if the results we obtained are underwhelming compared to the state of
the art, this does not mean that the results are a complete failure; they are still promising and
point toward a possible success of this technique, even if it is hard to estimate at the time the
precision that could be obtained from it. A meta learning approach could probably lead to an
architecture and a set of hyperparameters more suitable to the problem at end. However I fear
that, even by trimming unpromising sets of parameters and parallelising the di�erent training,
it would take a tremendous amount of time in order to complete this task. On a powerful node
from the Fraunhofer cluster it took almost 40 hours to compute a reasonably small training,
meaning weeks if not months of training to converge towards a (locally) optimal solution.

Solal Nathan - ARPE Report 78 / 91

8 BIBLIOGRAPHY

8 Bibliography

[1] Hugo Bertiche, Meysam Madadi, and Sergio Escalera. �CLOTH3D: Clothed 3D Hu-
mans�. In: Lecture Notes in Computer Science(2020), pp. 344�359.issn: 1611-3349.
doi : 10.1007/978-3-030-58565-5_21. url : http://dx.doi.org/10.1007/978-3-030-58565-
5_21.

[2] Christopher M. Bishop.Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.isbn: 0387310738.

[3] James F. Blinn. �A Generalization of Algebraic Surface Drawing�. In:ACM Trans.
Graph. 1.3 (July 1982), pp. 235�256.issn: 0730-0301.doi : 10.1145/357306.357310.
url : https://doi.org/10.1145/357306.357310.

[4] Federica Bogo et al. �Dynamic FAUST: Registering Human Bodies in Motion�. In:2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(July 2017).
doi : 10.1109/cvpr.2017.591. url : http://dx.doi.org/10.1109/CVPR.2017.591.

[5] Mark Boss et al.NeRD: Neural Re�ectance Decomposition from Image Collections. 2020.
arXiv: 2012.03918[cs.CV] .

[6] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. 1st. USA: Oxford Univer-
sity Press, Inc., 2014.isbn: 0199678111.

[7] James Bradbury et al.JAX: composable transformations of Python+NumPy programs.
Version 0.2.5. 2018.url : http://github.com/google/jax .

[8] Tom B. Brown et al. �Language Models are Few-Shot Learners�. In: (2020). arXiv:
2005.14165[cs.CL] .

[9] Eric R. Chan et al. �pi-GAN: Periodic Implicit Generative Adversarial Networks for
3D-Aware Image Synthesis�. In: (2020). arXiv:2012.00926[cs.CV] .

[10] Angel X. Chang et al.ShapeNet: An Information-Rich 3D Model Repository. 2015. arXiv:
1512.03012[cs.GR] .

[11] Anpei Chen et al.MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo. 2021. arXiv: 2103.15595[cs.CV] .

[12] Inchang Choi et al. �Extreme View Synthesis�. In:2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV) (Oct. 2019). doi : 10.1109/iccv.2019.00787. url :
http://dx.doi.org/10.1109/ICCV.2019.00787.

[13] Francois Chollet et al.Keras. 2015.url : https://github.com/fchollet/keras .

[14] Christopher B. Choy et al. �3D-R2N2: A Uni�ed Approach for Single and Multi-view
3D Object Reconstruction�. In: Lecture Notes in Computer Science(2016), pp. 628�644.
issn: 1611-3349.doi : 10.1007/978-3-319-46484-8_38. url : http://dx.doi.org/10.1007/
978-3-319-46484-8_38.

[15] Alexandre Défossez et al. �A Simple Convergence Proof of Adam and Adagrad�. In:
(2020). arXiv: 2003.02395[stat.ML] .

[16] Frank Dellaert and Lin Yen-Chen. �Neural Volume Rendering: NeRF And Beyond�. In:
(2020). arXiv: 2101.05204[cs.CV] .

[17] J. Devlin et al. �BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding�. In: NAACL-HLT . 2019.

Solal Nathan - ARPE Report 79 / 91

8 BIBLIOGRAPHY

[18] Terrance DeVries et al.Unconstrained Scene Generation with Locally Conditioned Radi-
ance Fields. 2021. arXiv: 2104.00670[cs.CV] .

[19] Yilun Du et al. Neural Radiance Flow for 4D View Synthesis and Video Processing. 2020.
arXiv: 2012.09790[cs.CV] .

[20] Martin A. Fischler and Robert C. Bolles. �Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography�. In:
Commun. ACM 24.6 (June 1981), pp. 381�395.issn: 0001-0782.doi : 10.1145/358669.
358692. url : https://doi.org/10.1145/358669.358692.

[21] Y. Furukawa and J. Ponce. �Accurate, Dense, and Robust Multiview Stereopsis�. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence32 (2010), pp. 1362�
1376.

[22] Yasutaka Furukawa and Carlos Hernández. �Multi-View Stereo: A Tutorial�. In:Foun-
dations and Trends® in Computer Graphics and Vision9.1-2 (2015), pp. 1�148.issn:
1572-2740.doi : 10.1561/0600000052. url : http://dx.doi.org/10.1561/0600000052.

[23] Guy Gafni et al. Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar
Reconstruction. 2020. arXiv: 2012.03065[cs.CV] .

[24] Chen Gao et al.Portrait Neural Radiance Fields from a Single Image. 2021. arXiv:
2012.05903[cs.CV] .

[25] Stephan J. Garbin et al.FastNeRF: High-Fidelity Neural Rendering at 200FPS. 2021.
arXiv: 2103.10380[cs.CV] .

[26] Andreas Geiger et al. �Vision meets Robotics: The KITTI Dataset�. In:International
Journal of Robotics Research (IJRR)(2013).

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep Learning. http : / /www.
deeplearningbook.org. MIT Press, 2016.

[28] Thibault Groueix et al. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface
Generation. 2018. arXiv: 1802.05384[cs.CV] .

[29] Marc Habermann et al. �DeepCap: Monocular Human Performance Capture Using Weak
Supervision�. In: (2020). arXiv: 2003.08325[cs.CV] .

[30] Xianfeng Han, Hamid Laga, and Mohammed Bennamoun. �Image-based 3D Object Re-
construction: State-of-the-Art and Trends in the Deep Learning Era�. In:IEEE Trans-
actions on Pattern Analysis and Machine Intelligence(2019), pp. 1�1. issn: 1939-3539.
doi : 10.1109/tpami.2019.2954885. url : http: / /dx.doi .org/10.1109/TPAMI.2019.
2954885.

[31] Richard Hartley and Andrew Zisserman.Multiple View Geometry in Computer Vision.
2nd ed. Cambridge University Press, 2004.doi : 10.1017/CBO9780511811685.

[32] Tong He et al. �Geo-PIFu: Geometry and Pixel Aligned Implicit Functions for Single-
view Human Reconstruction�. In: (2020). arXiv:2006.08072[cs.CV] .

[33] Peter Hedman et al.Baking Neural Radiance Fields for Real-Time View Synthesis. 2021.
arXiv: 2103.14645[cs.CV] .

[34] Sepp Hochreiter and Jürgen Schmidhuber. �Long Short-Term Memory�. In:Neural Com-
putation 8 (1997), pp. 1735�1780.

Solal Nathan - ARPE Report 80 / 91

8 BIBLIOGRAPHY

[35] Zeng Huang et al. �ARCH: Animatable Reconstruction of Clothed Humans�. In: (2020).
arXiv: 2004.04572[cs.GR] .

[36] Zeng Huang et al. �Deep Volumetric Video From Very Sparse Multi-View Performance
Capture�. In: (2018).

[37] Catalin Ionescu et al. �Human3.6M: Large Scale Datasets and Predictive Methods for 3D
Human Sensing in Natural Environments�. In:IEEE Transactions on Pattern Analysis
and Machine Intelligence36.7 (July 2014), pp. 1325�1339.

[38] Ajay Jain, Matthew Tancik, and Pieter Abbeel.Putting NeRF on a Diet: Semantically
Consistent Few-Shot View Synthesis. 2021. arXiv: 2104.00677[cs.CV] .

[39] Boyi Jiang et al. �BCNet: Learning Body and Cloth Shape from A Single Image�. In:
(2020). arXiv: 2004.00214[cs.CV] .

[40] Diederik P. Kingma and Jimmy Ba. �Adam: A Method for Stochastic Optimization�.
In: (2017). arXiv: 1412.6980[cs.LG] .

[41] Adam R. Kosiorek et al.NeRF-VAE: A Geometry Aware 3D Scene Generative Model.
2021. arXiv: 2104.00587[stat.ML] .

[42] Matthias Kraus et al. �Toward Mass Video Data Analysis: Interactive and Immersive
4D Scene Reconstruction�. In:Sensors20.18 (2020).issn: 1424-8220.url : https : / /
www.mdpi.com/1424-8220/20/18/5426.

[43] Yann LeCun and Corinna Cortes.MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/.
2010.url : http://yann.lecun.com/exdb/mnist/ .

[44] Jiahui Lei et al. �Pix2Surf: Learning Parametric 3D Surface Models of Objects from
Images�. In: Lecture Notes in Computer Science(2020), pp. 121�138.issn: 1611-3349.
doi : 10.1007/978-3-030-58523-5_8. url : http://dx.doi.org/10.1007/978-3-030-58523-
5_8.

[45] Ruilong Li et al. �Monocular Real-Time Volumetric Performance Capture�. In: (2020).
arXiv: 2007.13988[cs.CV] .

[46] Tianye Li et al. Neural 3D Video Synthesis. 2021. arXiv: 2103.02597[cs.CV] .

[47] Zhengqi Li et al.Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic
Scenes. 2021. arXiv: 2011.13084[cs.CV] .

[48] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.AutoInt: Automatic Inte-
gration for Fast Neural Volume Rendering. 2021. arXiv: 2012.01714[cs.CV] .

[49] Lingjie Liu et al. Neural Sparse Voxel Fields. 2021. arXiv: 2007.11571[cs.CV] .

[50] William E. Lorensen and Harvey E. Cline.Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. 1987.

[51] David G. Lowe. �Object Recognition from Local Scale-Invariant Features�. In:Proceed-
ings of the International Conference on Computer Vision-Volume 2 - Volume 2. ICCV
'99. USA: IEEE Computer Society, 1999, p. 1150.isbn: 0769501648.

[52] Ricardo Martin-Brualla et al. �NeRF in the Wild: Neural Radiance Fields for Uncon-
strained Photo Collections�. In: (2021). arXiv: 2008.02268[cs.CV] .

[53] Lars Mescheder et al.Occupancy Networks: Learning 3D Reconstruction in Function
Space. 2019. arXiv: 1812.03828[cs.CV] .

Solal Nathan - ARPE Report 81 / 91

8 BIBLIOGRAPHY

[54] Ben Mildenhall et al. �NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis�. In: (2020). arXiv: 2003.08934[cs.CV] .

[55] Thomas M. Mitchell. Machine Learning. 1st ed. USA: McGraw-Hill, Inc., 1997.isbn:
0070428077.

[56] Ryota Natsume et al. �SiCloPe: Silhouette-Based Clothed People�. In: (2019). arXiv:
1901.00049[cs.CV] .

[57] T. Ne� et al. �DONeRF: Towards RealTime Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks�. In:Computer Graphics Forum40.4 (July 2021),
pp. 45�59. issn: 1467-8659.doi : 10.1111/cgf.14340. url : http://dx.doi.org/10.1111/
cgf.14340.

[58] Michael Niemeyer and Andreas Geiger.CAMPARI: Camera-Aware Decomposed Gener-
ative Neural Radiance Fields. 2021. arXiv: 2103.17269[cs.CV] .

[59] Michael Niemeyer et al.Di�erentiable Volumetric Rendering: Learning Implicit 3D Rep-
resentations without 3D Supervision. 2020. arXiv: 1912.07372[cs.CV] .

[60] Atsuhiro Noguchi et al. Neural Articulated Radiance Field. 2021. arXiv: 2104 .03110
[cs.CV] .

[61] Michael Oechsle, Songyou Peng, and Andreas Geiger.UNISURF: Unifying Neural Im-
plicit Surfaces and Radiance Fields for Multi-View Reconstruction. 2021. arXiv: 2104.
10078[cs.CV] .

[62] Jeong Joon Park et al.DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation. 2019. arXiv: 1901.05103[cs.CV] .

[63] Keunhong Park et al.Deformable Neural Radiance Fields. 2020. arXiv: 2011 . 12948
[cs.CV] .

[64] Adam Paszke et al. �PyTorch: An Imperative Style, High-Performance Deep Learning
Library�. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach
et al. Curran Associates, Inc., 2019, pp. 8024�8035.url : http: / /papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[65] Sida Peng et al.Neural Body: Implicit Neural Representations with Structured Latent
Codes for Novel View Synthesis of Dynamic Humans. 2021. arXiv:2012.15838[cs.CV] .

[66] Songyou Peng et al.Convolutional Occupancy Networks. 2020. arXiv:2003.04618[cs.CV] .

[67] Thomas Pollok. �A New Multi-Camera Dataset with Surveillance, Mobile and Stereo
Cameras for Tracking, Situation Analysis and Crime Scene Investigation Applications�.
In: ICVIP 2018. New York, NY, USA: Association for Computing Machinery, 2018,
pp. 171�175. isbn: 9781450366137.

[68] Gerard Pons-Moll et al. �Dyna�. In: ACM Transactions on Graphics34.4 (July 2015),
pp. 1�14. issn: 1557-7368.doi : 10.1145/2766993. url : http://dx.doi.org/10.1145/
2766993.

[69] Kari Pulli et al. �Realtime Computer Vision with OpenCV: Mobile Computer-Vision
Technology Will Soon Become as Ubiquitous as Touch Interfaces.� In:Queue10.4 (Apr.
2012), pp. 40�56. issn: 1542-7730.doi : 10.1145/2181796.2206309. url : https://doi.
org/10.1145/2181796.2206309.

Solal Nathan - ARPE Report 82 / 91

8 BIBLIOGRAPHY

[70] Albert Pumarola et al. �3DPeople: Modeling the Geometry of Dressed Humans�. In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (Oct. 2019).
doi : 10.1109/iccv.2019.00233. url : http://dx.doi.org/10.1109/ICCV.2019.00233.

[71] Alec Radford and Karthik Narasimhan. �Improving Language Understanding by Gen-
erative Pre-Training�. In: 2018.

[72] Amit Raj et al. PVA: Pixel-aligned Volumetric Avatars. 2021. arXiv:2101.02697[cs.CV] .

[73] Nikhila Ravi et al. �Accelerating 3D Deep Learning with PyTorch3D�. In:arXiv:2007.08501
(2020).

[74] Daniel Rebain et al.DeRF: Decomposed Radiance Fields. 2020. arXiv: 2011 . 12490
[cs.CV] .

[75] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. �On the Convergence of Adam and
Beyond�. In: (2019). arXiv: 1904.09237[cs.LG] .

[76] Christian Reiser et al.KiloNeRF: Speeding up Neural Radiance Fields with Thousands
of Tiny MLPs. 2021. arXiv: 2103.13744[cs.CV] .

[77] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio Ferrari. ShaRF: Shape-
conditioned Radiance Fields from a Single View. 2021. arXiv: 2102.08860[cs.CV] .

[78] Gernot Riegler and Vladlen Koltun. �Free View Synthesis�. In:Lecture Notes in Com-
puter Science(2020), pp. 623�640.issn: 1611-3349.doi : 10.1007/978-3-030-58529-7_37.
url : http://dx.doi.org/10.1007/978-3-030-58529-7_37.

[79] Gernot Riegler and Vladlen Koltun. �Stable View Synthesis�. In: (2020). arXiv:2011.
07233[cs.CV] .

[80] Herbert Robbins and Sutton Monro. �A Stochastic Approximation Method�. In: Ann.
Math. Statist. 22.3 (Sept. 1951), pp. 400�407.doi : 10.1214/aoms/1177729586. url :
https://doi.org/10.1214/aoms/1177729586.

[81] Sebastian Ruder. �An overview of gradient descent optimization algorithms�. In: (2017).
arXiv: 1609.04747[cs.LG] .

[82] D. Rumelhart, Geo�rey E. Hinton, and R. J. Williams. �Learning representations by
back-propagating errors�. In:Nature 323 (1986), pp. 533�536.

[83] D. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. �Learning representations
by back-propagating errors�. In:Nature 323 (1986), pp. 533�536.

[84] Stuart J. Russell and Peter Norvig.Arti�cial Intelligence: A Modern Approach (2nd
Edition) . Prentice Hall, Dec. 2002.isbn: 0137903952.

[85] Shunsuke Saito et al. �PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed
Human Digitization�. In: (2019). arXiv: 1905.05172[cs.CV] .

[86] Shunsuke Saito et al. �PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-
Resolution 3D Human Digitization�. In: (2020). arXiv: 2004.00452[cs.CV] .

[87] Johannes Lutz Schönberger and Jan-Michael Frahm. �Structure-from-Motion Revis-
ited�. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[88] Johannes Lutz Schönberger et al. �Pixelwise View Selection for Unstructured Multi-View
Stereo�. In: European Conference on Computer Vision (ECCV). 2016.

Solal Nathan - ARPE Report 83 / 91

8 BIBLIOGRAPHY

[89] Katja Schwarz et al.GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis.
2021. arXiv: 2007.02442[cs.CV] .

[90] Jae Shin Yoon et al. �Novel View Synthesis of Dynamic Scenes With Globally Coherent
Depths From a Monocular Camera�. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2020).doi : 10.1109/cvpr42600.2020.
00538. url : http://dx.doi.org/10.1109/cvpr42600.2020.00538.

[91] Vincent Sitzmann et al.Implicit Neural Representations with Periodic Activation Func-
tions. 2020. arXiv: 2006.09661[cs.CV] .

[92] Shih-Yang Su et al.A-NeRF: Surface-free Human 3D Pose Re�nement via Neural Ren-
dering. 2021. arXiv: 2102.06199[cs.CV] .

[93] Xingyuan Sun et al. �Pix3D: Dataset and Methods for Single-Image 3D Shape Mod-
eling�. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(June 2018).doi : 10.1109/cvpr.2018.00314. url : http://dx.doi.org/10.1109/CVPR.
2018.00314.

[94] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An Introduction (2nd
Edition) . MIT Press, Cambridge, MA, 2018.

[95] Matthew Tancik et al. Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains. 2020. arXiv: 2006.10739[cs.CV] .

[96] Matthew Tancik et al. �Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains�. In: NeurIPS (2020).

[97] Matthew Tancik et al. Learned Initializations for Optimizing Coordinate-Based Neural
Representations. 2021. arXiv: 2012.02189[cs.CV] .

[98] A. Tewari et al. �State of the Art on Neural Rendering�. In: Computer Graphics Forum
39.2 (May 2020), pp. 701�727.issn: 1467-8659.doi : 10.1111/cgf .14022. url : http :
//dx.doi.org/10.1111/cgf.14022.

[99] TheQtCompanyLtd. The Qt Framework. 2020.url : http://www.qt.io/qt-framework .

[100] Garvita Tiwari et al. �SIZER: A Dataset and Model for Parsing 3D Clothing and Learn-
ing Size Sensitive 3D Clothing�. In:Lecture Notes in Computer Science(2020), pp. 1�18.
issn: 1611-3349.doi : 10.1007/978-3-030-58580-8_1. url : http://dx.doi.org/10.1007/
978-3-030-58580-8_1.

[101] Edgar Tretschk et al.Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video. 2021. arXiv:2012.12247[cs.CV] .

[102] Alex Trevithick and Bo Yang. GRF: Learning a General Radiance Field for 3D Scene
Representation and Rendering. 2020. arXiv: 2010.04595[cs.CV] .

[103] Bill Triggs et al. �Bundle Adjustment � A Modern Synthesis�. In: VISION ALGO-
RITHMS: THEORY AND PRACTICE, LNCS . Springer Verlag, 2000, pp. 298�375.

[104] Ashish Vaswani et al.Attention Is All You Need. 2017. arXiv: 1706.03762[cs.CL] .

[105] Fjodor van Veen.The Neural Network Zoo. 2016, revised in 2019.url : https://www.
asimovinstitute.org/neural-network-zoo/.

[106] Qianqian Wang et al.IBRNet: Learning Multi-View Image-Based Rendering. 2021. arXiv:
2102.13090[cs.CV] .

Solal Nathan - ARPE Report 84 / 91

8 BIBLIOGRAPHY

[107] Zirui Wang et al.NeRF�: Neural Radiance Fields Without Known Camera Parameters.
2021. arXiv: 2102.07064[cs.CV] .

[108] Olivia Wiles et al. �SynSin: End-to-End View Synthesis From a Single Image�. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2020).doi : 10.1109/cvpr42600.2020.00749. url : http://dx.doi.org/10.1109/
CVPR42600.2020.00749.

[109] Wenqi Xian et al.Space-time Neural Irradiance Fields for Free-Viewpoint Video. 2021.
arXiv: 2011.12950[cs.CV] .

[110] Donglai Xiang et al.MonoClothCap: Towards Temporally Coherent Clothing Capture
from Monocular RGB Video. 2020. arXiv: 2009.10711[cs.CV] .

[111] Haozhe Xie et al. �Pix2Vox: Context-Aware 3D Reconstruction From Single and Multi-
View Images�. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
(Oct. 2019). doi : 10.1109/iccv.2019.00278. url : http://dx.doi.org/10.1109/ICCV.2019.
00278.

[112] Haozhe Xie et al. �Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction
from Single and Multiple Images�. In:International Journal of Computer Vision 128.12
(July 2020), pp. 2919�2935.issn: 1573-1405.doi : 10.1007/s11263-020-01347-6. url :
http://dx.doi.org/10.1007/s11263-020-01347-6.

[113] Weipeng Xu et al.MonoPerfCap: Human Performance Capture from Monocular Video.
2018. arXiv: 1708.02136[cs.CV] .

[114] Lin Yen-Chen et al.INeRF: Inverting Neural Radiance Fields for Pose Estimation. 2021.
arXiv: 2012.05877[cs.CV] .

[115] Alex Yu et al. �pixelNeRF: Neural Radiance Fields from One or Few Images�. In: (2020).
arXiv: 2012.02190[cs.CV] .

[116] Alex Yu et al. PlenOctrees for Real-time Rendering of Neural Radiance Fields. 2021.
arXiv: 2103.14024[cs.CV] .

[117] Amir Zamir et al. �Taskonomy: Disentangling Task Transfer Learning�. In: (2018). arXiv:
1804.08328[cs.CV] .

[118] Chao Zhang et al. �Detailed, Accurate, Human Shape Estimation from Clothed 3D Scan
Sequences�. In:2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (July 2017). doi : 10.1109/cvpr.2017.582. url : http://dx.doi.org/10.1109/
CVPR.2017.582.

[119] Kai Zhang et al.NeRF++: Analyzing and Improving Neural Radiance Fields. 2020.
arXiv: 2010.07492[cs.CV] .

[120] Zerong Zheng et al. �PaMIR: Parametric Model-Conditioned Implicit Representation
for Image-based Human Reconstruction�. In: (2020). arXiv:2007.03858[cs.CV] .

[121] Heming Zhu et al. �Deep Fashion3D: A Dataset and Benchmark for 3D Garment Recon-
struction from Single Images�. In:Lecture Notes in Computer Science(2020), pp. 512�
530. issn: 1611-3349.doi : 10.1007/978-3-030-58452-8_30. url : http://dx.doi.org/10.
1007/978-3-030-58452-8_30.

Solal Nathan - ARPE Report 85 / 91

A APPENDIX

A Appendix

A.1 The OBJ Speci�cation

To give a short example on how to represent meshes through de�nition of faces and vertices,
the following is short introduction to a very common and simple �le format for mesh: the OBJ
�le format. It it used in Section 4: Mask2Mesh.

OBJ is a �le format is a speci�cation developed by Wavefront, it as the extension.obj .
It is used to model 3D object such as point cloud, meshes and even texture. It is a widely
used �le format and accepted by many di�erent software due to its simplicity. It enables great
interoperability between software which handles 3D models. The OBJ �le format is a plain
text �le format with one instruction per line. The instructions are able to specify:

ˆ the position of a vertex in 3D space.x, y and z can be �oating point numbers, positive
of negative;

x y z [,w]
v 0 0 1
with RGB colour between 0.0 and 1.0
v 0 1 1 0.25 0.25 0.75

ˆ the vertex texture in UV coordinate between 0 and 1;

u, [,v ,w]
vt 0.50 0.50 [0]

ˆ the vertex normal vectors. It is possible to specify not unit vector, ie |v| != 1;

x y z
vn 0.707 0.707 0.000

ˆ polygonal face element, useful to create triangles for example;

v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3 ...
f 1 2 3
f 3/1 4/2 5/3
f 6/4/1 3/5/3 7/6/5
f 7//1 8//2 9//3

A very simple cube example created with the obj speci�cation:

Solal Nathan - ARPE Report 86 / 91

A APPENDIX A.1 The OBJ Speci�cation

Figure 61: A simple cube, viewed with MeshLab

cube.obj
v 0 2 2
v 0 0 2
v 2 0 2
v 2 2 2
v 0 2 0
v 0 0 0
v 2 0 0
v 2 2 0

f 1 2 3 4
f 8 7 6 5
f 4 3 7 8
f 5 1 4 8
f 5 6 2 1
f 2 6 7 3

Now with a material �le (.mtl), also known as a texture.

Solal Nathan - ARPE Report 87 / 91

A APPENDIX A.2 OBJ �le format cheat sheet

(a) A textured cube

(b) The texture used for the dice

A.2 OBJ �le format cheat sheet

List of geometric vertices, with (x, y, z [,w]) coordinates,
w is optional and defaults to 1.0.
v 0.123 0.234 0.345 1.0

List of texture coordinates, in (u, [,v ,w]) coordinates, these will vary
between 0 and 1. v, w are optional and default to 0.
vt 0.500 1 [0]

List of vertex normals in (x,y,z) form; normals might not be unit vectors.
vn 0.707 0.000 0.707

Parameter space vertices in (u [,v] [,w]) form;
free form geometry statement
vp 0.310000 3.210000 2.100000

Polygonal face element
f 1 2 3
f 3/1 4/2 5/3
f 6/4/1 3/5/3 7/6/5
f 7//1 8//2 9//3

Line element
l 5 8 1 2 4 9

named object and polygon group
o [object name]

...
g [group name]
...

Solal Nathan - ARPE Report 88 / 91

A APPENDIX A.2 OBJ �le format cheat sheet

smooth shading across polygons
s 1

...
Smooth shading can be disabled as well.
s off
...

Referencing material
mtllib [external .mtl file name]

Using material
usemtl [material name]

The material file specification

Define a material named ' Colored'
newmtl Colored

Ambiant color Ka
white in this example
Ka 1.000 1.000 1.000

Difuse color Kd
white in this example
Kd 1.000 1.000 1.000

Specular color Ks, wheihted by the specular exponen Ns (between 0 and 100)
black = off
Ks 0.000 0.000 0.000
Ns 10.000

Transparency, d for dissolved
some implementations use Tr = 1 - d
d 0.9
Tr 0.1

Transmission filter Tf (RGB)
Tf 0.5 0.8 0.5

Optical density (index of refraction)
example using glass
Ni 1.5200

Illumination mode
0. Color on and Ambient off

Solal Nathan - ARPE Report 89 / 91

A APPENDIX A.3 Example of a textured cube and the appropriate material �le

1. Color on and Ambient on
2. Highlight on
3. Reflection on and Ray trace on
4. Transparency: Glass on, Reflection: Ray trace on
5. Reflection: Fresnel on and Ray trace on
6. Transparency: Refraction on, Reflection: Fresnel off and Ray trace on
7. Transparency: Refraction on, Reflection: Fresnel on and Ray trace on
8. Reflection on and Ray trace off
9. Transparency: Glass on, Reflection: Ray trace off
10. Casts shadows onto invisible surfaces
illum 2

Texture map
the ambient texture map
map_Ka texture.png

the diffuse texture map (most of the time, it will be the same as the
ambient texture map)
map_Kd texture.png

specular color texture map
map_Ks texture.png

...

The full speci�cation can be found here:
https://paulbourke.net/dataformats/obj/
https://paulbourke.net/dataformats/mtl/

A.3 Example of a textured cube and the appropriate material �le

The OBJ �le:

mtllib texture.mtl
v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000

vt 0 0
vt 0 1
vt 0.166 1
vt 0.166 0

Solal Nathan - ARPE Report 90 / 91

A APPENDIX A.3 Example of a textured cube and the appropriate material �le

vt 0.333 0
vt 0.333 1
vt 0.5 0
vt 0.5 1
vt 0.666 0
vt 0.666 1
vt 0.833 0
vt 0.833 1
vt 1 0
vt 1 1

usemtl dice
f 1/1 2/2 3/3 4/4
f 8/3 7/4 6/5 5/6
f 4/5 3/6 7/8 8/7
f 5/8 1/7 4/9 8/10
f 5/9 6/10 2/12 1/11
f 2/11 6/12 7/14 3/13

And the material �le:

newmtl dice
Ka 0.200000 0.200000 0.200000
Kd 1.000000 1.000000 1.000000
Ks 1.000000 1.000000 1.000000
Tr 1.000000
illum 2
Ns 1.000000
map_Kd dice.png

Solal Nathan - ARPE Report 91 / 91

	Introduction and objectives
	Motivation
	Presentation of the IOSB
	Related work at the laboratory
	Objectives

	Deep Learning and Computer Vision
	Introduction
	The main paradigms
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Artificial Neural Networks
	Linear Algebra
	Activation functions
	Hyperparameters
	Cost function
	Gradient descent
	Backpropagation

	Types of ANN
	Feedforward NN
	RNN
	CNN
	Other well known architectures

	Object detection and segmentation
	Summary

	3D Reconstruction
	Introduction
	Problem statement
	Pinhole camera model

	Classical methods
	Classical pipeline
	Structure from Motion
	Bundle Adjustment
	Multi View Stereo

	Types of 3D Representation
	Image-based representation
	Voxel grid representation
	Point cloud representation
	Mesh representation
	Implicit function

	Methods on the types of 3D Representation
	Modern Approach
	Novel View Synthesis
	Neural and differentiable rending

	3D Human Reconstruction
	PIFu and the derivatives

	Evaluation metrics
	Accuracy metrics
	Performance criterion

	Mask2Mesh
	Introduction and objectives
	Software used
	Input Data
	Original Image
	MaskArray
	3D Vertex Map

	The algorithm
	Triangulation
	The Delaunay triangulation
	Algorithms
	Implementation of the triangulation
	Removing unwanted triangles

	Output Data
	Performances
	Compression Rate
	Later modification

	NeRF taxonomy
	Introduction
	Theory
	Generalised methods
	Specialised methods
	Faster inference
	4D reconstruction
	Deformable
	Spatio-temporal

	Pose estimation
	Datasets
	Review papers
	Fewer input images
	Implementations details

	NeRF application
	Introduction and goal
	NeRF implementation
	3D reconstruction experiments
	Creation of the dataset
	Premilinary results
	Experimentation
	The choice of the method
	First experiment
	Second experiment

	Voxelisation and meshing
	Conclusion

	Discussion and future works
	Mask2Mesh
	NeRF taxonomy
	NeRF application

	Bibliography

