Conferences#
- ๐
Fairness in job recommendations: estimating, explaining, and reducing gender gaps by Guilaume Bied,
Christophe Gaillac, Morgane Hoffmann, Elia Perennes,
Philippe Caillou,
Bruno Crepon, Solal Nathan and
Michรจle Sebag, ECAI, AEQUITAS Workshop (
๐
Slides), 2023. - ๐
Toward Job Recommendation for All, by Guilaume Bied, Solal Nathan, Elia Perennes, Morgane Hoffmann,
Philippe Caillou,
Bruno Crepon,
Christophe Gaillac and
Michรจle Sebag, IJCAI (AI And Social Good Track) (
๐
Poster,
๐
Slides,
Code), 2023. Also presented at ECML PKDD, AI4HR Workshop, 2023. - ๐
RECTO : Recommandation dโEmploi diminuant la Congestion par Transport Optimal, by Guilaume Bied, Elia Perennes, Solal Nathan, Victor Alfonso Naya,
Philippe Caillou,
Bruno Crepon,
Christophe Gaillac and
Michรจle Sebag, APIA [Best Paper Award], 2023. - ๐
Recommender system in a non-stationary context: recommending job ads in
pandemic times, by Guillaume Bied, Solal Nathan, Elia Perennes, Victor
Alfonso Naya,
Philippe Caillou,
Bruno
Crepon,
Christophe
Gaillac and
Michรจle
Sebag, presented at ECML PKDD (
๐
Poster), 2022. - ๐
On the impact of overfitting in learning to rank using a margin loss: a case
study in job recommender systems by Guillaume Bied and
Solal Nathan, poster presented at
Baylearn and
JDSE the same year (
๐
Poster), 2022.
Internship reports#